Chứng tỏ rằng
a)( 11^1 + 11^2 + 11^3 + ... + 11^7 + 11^8 ) chia hết cho 12
b) ( 7 + 7^2 + 7^3 + 7^4 ) chia hết cho 50
c)( 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 ) chia hết cho 13
giúp mik với!.Các bạn giải nhớ có cách giải luôn nha!Ai làm đúng và nhanh nhất mình sẽ tick cho
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13