K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 11 2018

Gọi \(ƯCLN\left(3n+1;5n+2\right)=a\)

\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮a\\5n+2⋮a\end{matrix}\right.\) \(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮a\) \(\Rightarrow1⋮a\Rightarrow a=1\)

\(\Rightarrow3n+1\)\(5n+2\) là 2 số nguyên tố cùng nhau với mọi n \(\Rightarrow\dfrac{3n+1}{5n+2}\) là phân số tối giản với mọi n

20 tháng 11 2018

lp 6 bt lm r

gọi UCLN(3n+1;5n+2)=d

ta có:

5n+2-(3n+1)=2n+2 chia hết cho d

5n+2-(2n+2)=3n chia hết cho d 

3n+1-3n=1 chia hết cho d

=>d=1

=>3n+1 và 5n+2 là 2 số ng t cùng nhau

=>phân số trên là ph/số tối giản

20 tháng 11 2018

Gọi \(ƯC\left(3n+1;5n+2\right)=d\left(d\in N\right)\)

\(\Rightarrow3n+1⋮d,5n+2⋮d\)

\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)

\(\Rightarrow15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Ước chung của tử và mẫu là 1 nên phân số \(\frac{3n+1}{5n+2}\) tối giản

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

3 tháng 3 2023

Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)

Ta có:

3n + 2 chia hết cho d

5n + 3 chia hết cho d

<=> 5(3n + 2) chia hết cho d = (15n + 10) chia hết cho d

<=> 3(5n +3) chia hết cho d = (15n + 9) chia hết cho d

=> (15n + 10) - (15n + 9) chia hết cho d = 1 chia hết cho d

=> d = 1

=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.

Vậy Phân số 3�+25�+3 là phân số tối giản.

tự làm nha thấy đúng cho mik một like

20 tháng 12 2022

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

a: Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow6n+4-6n-3⋮d\)

=>d=1

=>Phân số tối giản

b: Gọi d=UCLN(3n+2;5n+3)

\(\Leftrightarrow15n+10-15n-9⋮d\)

=>d=1

=>Phân số tối giản

a: Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow6n+4-6n-3⋮d\)

=>d=1

=>Phân số tối giản

b: Gọi d=UCLN(3n+2;5n+3)

\(\Leftrightarrow15n+10-15n-9⋮d\)

=>d=1

=>Phân số tối giản

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản