Cho A=3^101 + 3^102 +3^103 + ..... + 3^200
CMR : A chia hết cho 120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{10}+3^{11}+3^{12}\)
⇔ \(3^{10}\left(1+3+3^2\right)\)
⇔ \(3^{10}.13\)
⇒ \(3^{10}.13\) chia hết cho 13
\(B=\frac{101}{102}+\frac{102}{103}+\frac{103}{101}\)
\(B=1\)
B < 3
a) (-1 + 2 - 3 + 4 -...- 49 + 50 ) - ( 1 - 2 + 3 - 4 +...+ 49 - 50)
= -1 + 2 - 3 + 4 -...- 49 + 50 - 1 + 2 -3 + 4 -... - 49 + 50)
=-1 -1
=-1 + (-1)
=-2
Mình nghĩ là đúng đó ,mình nên nhìn kĩ B1 và B2
b) Tự làm nhé
2)
a) (a - 3) - (a - 5)
=a - 3 - a + 5
=a - a - 3 + 5
= 0 - (3 - 5)
= -(3 - 5)
= - (-2) =2
b) ( a + b - c) - (a - c)
=a + b - c - a + c
= a - a + b - c +c
= 0 + b + c - c
= b + ( c - c)
= b + 0
= b
c) ( a + b ) - ( a - c -d + b)
= a + b - a + c +d -b )
= a - a + (b -b) - c + d
= 0 + 0 - c+d
= 0 - c + d
= - c+d
(1-2+3-4+5-6+7-8+...+101-102+103) * x-120=2012
[ -1 + ( -1 ) ... ( -1 ) + 103] * x -120 = 2012
( -1 x 51 + 103 ) * x - 120 = 2012
( -51 +103) * x = 2012 + 120
52 * x =2132
x= 2132 : 52
x= 41
\(A=3^{101}+3^{102}+3^{103}+...+3^{200}\)
\(3A=3^{102}+3^{103}+3^{104}+...+3^{201}\)
\(3A-A=\left(3^{102}+3^{103}+3^{104}+3^{201}\right)-\left(3^{101}+3^{102}+3^{103}+...+3^{201}\right)\)
\(2A=3^{201}-3^{101}\)
\(2A=3^{100}\)
\(\Rightarrow A=3^{100}:2\)
\(A=3^{101}+3^{102}+3^{103}+...+3^{200}\)
\(A=3^{101}+3^{102}+3^{103}+3^{104}+...+3^{197}+3^{198}+3^{199}+3^{200}\)
\(A=3^{100}\left(3+3^2+3^3+3^4\right)+...+3^{196}\left(3+3^2+3^3+3^4\right)\)
\(A=120\left(3^{100}+...+3^{196}\right)⋮120\)