K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

\(=\dfrac{2}{xy}:\left(\dfrac{x-y}{xy}\right)^2-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}.\left(\dfrac{xy}{x-y}\right)^2-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2xy}{\left(x-y\right)^2}-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2xy-x^2-y^2}{\left(x-y\right)^2}\)

\(=\dfrac{-\left(x^2-2xy+y^2\right)}{\left(x-y\right)^2}=\dfrac{-\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)

vậy .........................................

13 tháng 11 2021

\(ĐK:x\ne\pm y\\ A=\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)\left(x+y\right)}:\dfrac{x^2+2xy+y^2-2xy}{\left(x-y\right)\left(x+y\right)}\\ A=\dfrac{x^2+y^2}{\left(x+y\right)\left(x-y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{x^2+y^2}=1\left(đpcm\right)\)

Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=1

25 tháng 4 2017

Hướng dẫn trả lời:

ĐKXĐ: 0 < x ≠ 1.

Đặt √x = a (a > 0 và a ≠ 1)

Ta có:

(2+√xx+2√x+1−√x−2x−1).x√x+x−√x−1√x=[2+aa2+2a+1−a−2a2−1].a3+a2−a−1a=[(2+a)(a−1)−(a−2)(a+1)(a+1)(a2−1)].(a+1)(a2−1)a=2a(a+1)(a2−1).(a+1)(a2−1)a=2

Bạn xem lại đề bài b nhé.

undefined

30 tháng 7 2021

a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)

\(=2-6xy-3+6xy=-1\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)

b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

 \(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)