K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Akai Haruma em có cách này nhưng khá là dài...

Coi pt trên là pt bậc 2 ẩn y. Để pt có nghiệm thì

\(\Delta'=x^2-\left(-7x-12\right)\ge0\Leftrightarrow x\le-4\text{ hoặc }x\ge-3\)

Để pt có nghiệm nguyên \(\Delta'=k^2\Leftrightarrow x^2+7x+12=k^2\Leftrightarrow\left(x+\frac{7}{2}\right)^2-k^2=\frac{1}{4}\)

\(\Leftrightarrow\left(2x+7\right)^2-\left(2k\right)^2=1\)\(\Leftrightarrow\left(2x-2k+7\right)\left(2x+2k+7\right)=1\)

TH1: \(\left\{{}\begin{matrix}2x-2k+7=1\\2x+2k+7=1\end{matrix}\right.\Leftrightarrow x=-3\Rightarrow y=3\) (thay vào pt ban đầu rồi giải pt bậc 1:D)

TH2: \(\left\{{}\begin{matrix}2x-2k+7=-1\\2x+2k+7=-1\end{matrix}\right.\Leftrightarrow x=-4\Rightarrow y=4\) (thay vào pt ban đầu rồi giải pt bậc 1:D)

Có cần thử lại ko ta?:D em nghĩ là ko:v

AH
Akai Haruma
Giáo viên
31 tháng 10 2018

Lời giải:

\(x^2+2xy-7x-12=0\)

\(\Leftrightarrow y^2+2xy+x^2=x^2+7x+12\)

\(\Leftrightarrow x^2+7x+12=(x+y)^2=t^2\)

\(\Leftrightarrow 4x^2+28x+48=(2t)^2\)

\(\Leftrightarrow (2x+7)^2-1=(2t)^2\)

\(\Leftrightarrow (2x+7-2t)(2x+7+2t)=1\)

Nếu \(\left\{\begin{matrix} 2x+7-2t=1\\ 2x+7+2t=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-3\\ x+y=t=0\end{matrix}\right.\Rightarrow x=-3; y=3\)

Nếu \(\left\{\begin{matrix} 2x+7-2t=-1\\ 2x+7+2t=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-4\\ x+y=t=0\end{matrix}\right.\Rightarrow x=-4; y=4\)

Thử lại......

26 tháng 11 2018

Ta thấy \(y^2+2xy+x^2-x^2-7x+12=0\)

\(\Leftrightarrow\left(x+y\right)^2=x^2+7x+12\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)(1)

\(x,y\varepsilonℤ\)nên\(\left(x+y\right)^2\)là số chính phương và \(\left(x+3\right)\left(x+4\right)\)là tích 2 số nguyên liên tiếp (2)

Từ (1) và (2) ta được

\(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+3\right)\left(x+4\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)

Giải ra tìm được x,y

\(\hept{\begin{cases}\left(x+y\right)^2=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)

29 tháng 11 2019

ta có:\(y^2+2xy-7x-12=0\)

\(\Leftrightarrow y^2+2xy+x^2=x^2+7x+12\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)*

 Vế trái của * là số chính phương, vế phải là tích của 2 số liên tiếp nên phải có 1 số bằng 1

Do đó:\(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=4\end{cases}}}\)

Vậy phương trình có 2 nghiệm là (x;y)=(-3;3),(-4;4)

14 tháng 9 2016

a)xy-7x-2y=15

=>x(y-7)-2y=15

=>x(y-7)-2y+14=15+14

=>x(y-7)-2(y-7)=29

=>(x-2)(y-7)=29

=>x-2 và y-7 thuộc Ư(29)={1;-1;29;-29}

Với x-2=1 =>x=3 <=> y-7=29 =>y=36

Với x-2=-1 =>x=1 <=>y-7=-29 =>y=-22

Với x-2=29 =>x=31 <=>y-7=1 =>y=8

Với x-2=-29 =>x=-27 <=>y-7=-1 =>y=6

Vậy .....

 

 

14 tháng 9 2016

b)x2+5x-2xy-10y-11=0

<=>x2+5x-2xy-10y=11

<=>(x2-2xy)+(5x-10y)=11

<=>x(x-2y)+5(x-2y)=11

<=>(x+5)(x-2y)=11

=>x+5 và x-2y thuộc Ư(11)={1;-1;11;-11}

Xét x+5=1 =>x=-4 <=>x-2y=11 <=>-4-2y=11 =>y=\(-7\frac{1}{2}\left(loai\right)\)

Xét x+5=11 =>x=6 <=>x-2y=1 <=>6-2y=1 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-1 =>x=-6 <=>-6-2y=-11 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-11 =>x=-16 <=>-16-2y=-11 =>y=\(-2\frac{1}{2}\left(loai\right)\)

Vậy ko có giá trị x,y nguyên nào thỏa mãn

 

=>7x+y(2x-3)=7

=>7x-10,5+y(2x-3)=7-10,5

=>(x-1,5)(2y+7)=-3,5

=>(2x-3)(2y+7)=-7

=>\(\left(2x-3;2y+7\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;-7\right);\left(-2;-3\right);\left(1;0\right);\left(5;-4\right)\right\}\)

NV
24 tháng 2 2021

\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)

\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)

\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)

Mà x nguyên dương \(\Rightarrow2x-1>0\)

\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\) 

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~