CMR: \(14< \frac{2}{1}.\frac{4}{3}.\frac{6}{5}....\frac{200}{199}< 20\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 1/200
=> C^2 = 1/400 < 1/201
=> C^2 < 1/201 (đpcm)
K nhé!
Ta có \(k^2>k^2-1=\left(k+1\right)\left(k-1\right)\)
Áp dung vào bài toán ta được
\(A=\frac{1}{2}.\frac{3}{4}...\frac{199}{200}=\frac{1.3...199}{2.4...200}\)
\(\Rightarrow A^2=\frac{1^2.3^2...199^2}{2^2.4^2...200^2}< \frac{1^2.3^2...199^2}{1.3.3.5...199.201}=\frac{1^2.3^2...199^2}{1.3^2.5^2...199^2.201}=\frac{1}{201}\)
Vậy \(A^2< \frac{1}{201}\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Đặt: \(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{199}{1}\)là B
Cộng 1 vào mỗi phần số trừ phân số cuối cùng ta sẽ được:
B= \(\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}\)
=> B= \(200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\) => B= \(200\) X A
=> \(\frac{A}{B}\)\(=\frac{1}{200}\)
=> \(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)
=>\(x-20\) =\(\frac{1}{2000}:\frac{1}{200}\)
=> \(x-20=\).......................... Bạn tự làm tiếp nhé, chúc bạn học tốt !!!^^\(\)
1) Tính C
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)
Mình lỡ đánh nhầm 2 lần \(\frac{5}{14}\)nha :)) chỉ 1 lần thôi