Chứng minh
2n^4-7n^3-2n^2+13n+6 chia hết cho 6 với mọi n thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2n^4+2n^3-9n^3-9n^2+7n^2+7n+6n+6=\left(n+1\right)\left(2n^3-9n^2+7n+6\right)=\left(n+1\right)\left(2n^3-4n^2-5n^2+10n-3n+6\right)\)
\(=\left(n+1\right)\left(n-2\right)\left(2n^2-5n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n^2+n-6n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n+1\right)\left(n-3\right)\)
\(=\left(n-1+2\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)+2\left(n-2\right)\left(n-3\right)\left(2n-2+3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2\left(2n-2\right)\left(n-2\right)\left(n-3\right)+3.2\left(n-2\right)\left(n-3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2.2\left(n-1\right)\left(n-2\right)\left(n-3\right)+6\left(n-2\right)\left(n-3\right)\)
ta có: (n-1)(n-2)(n-3) là tích của 3 số tự nhiên liên tiếp (với n>=3) => có 1 số chia hết cho 1, cho 2, cho 3
và vì (1;2;3)=1 => tích của chúng chia hết cho 1.2.3=6 => chia hết cho 6
tiếp theo với 4(n-1)(n-2)(n-3) cũng vậy
còn 6(n-2)(n-3) thì hiển nhiên chia hết cho 6 nhé
=> chia hết cho 6
Lời giải:
Ta có:
$N=2n^4-7n^3-2n^2+13n+6$
$=2n^3(n+1)-9n^2(n+1)+7n(n+1)+6(n+1)$
$=(n+1)(2n^3-9n^2+7n+6)$
$=(n+1)[2n^2(n-2)-5n(n-2)-3(n-2)]$
$=(n+1)(n-2)(2n^2-5n-3)$
$=(n+1)(n-2)[2n(n-3)+(n-3)]=(n+1)(n-2)(n-3)(2n+1)$
Vì $n-2,n-3$ là 2 số nguyên liên tiếp nên $(n-2)(n-3)\vdots 2(*)$
Mặt khác:
Nếu $n=3k$ thì $n-3\vdots 3\Rightarrow N\vdots 3$
Nếu $n=3k+1$ thì $2n+1=2(3k+1)+1=3(2k+1)\vdots 3\Rightarrow N\vdots 3$
Nếu $n=3k+2$ thì $n-2\vdots 3\Rightarrow N\vdots 3$
Vậy $N\vdots 3(**)$
Từ $(*); (**)$ mà $(2,3)=1$ nên $N\vdots 6$ (đpcm)
Bài nà viết sai đề
\(N=2n^4-7n^3-2n^3+13n+6=(n-2)(n-3)(n+1)(2n+1)\)
(*) Ta có n\(\in Z\)=> n-2,n-3 là 2 số nguyên liên tiếp=> có 1 số \(\vdots 2\)
=> (n-2)(n-3)(n+1)(2n+1)\(\vdots 2\) (1)
(*) Vì n là số nguyên nên có 3 dạng 3k,3k+1,3k+2
Với n=3k=>n-3 \(\vdots 3\)=>\(N\vdots 3\)
Với n=3k+1=>\(2n+1 \vdots 3\)=> N\(\vdots 3\)
Với n=3k+2=> n+1 \(\vdots 3\)=> N \(\vdots 3\)
=> N\(\vdots 3 mọi n\)(2)
Từ (1),(2) kết hợp (2,3)=1=> N\(\vdots 6\)
Vậy N chia hết cho 6
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)
Vì n-2;n-3 là hai số liên tiếp
nên (n-2)(n-3) chia hết cho 2
=>A chia hết cho 2
TH1: n=3k
=>n-3=3k-3 chia hết cho 3
TH2: n=3k+1
=>2n+1=6k+2+1=6k+3 chia hết cho 3
TH3: n=3k+2
=>n+1=3k+3 chia hết cho 3
=>A chia hết cho 6