K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2021

Gọi O là tâm đáy \(\Rightarrow SO=\left(SBD\right)\cap\left(SAC\right)\)

Trong mp (SAC), gọi E là giao điểm SO và MN

MN là đường trung bình tam giác SAC \(\Rightarrow\) E là trung điểm SO

Trong mp (SAD), nối BE kéo dài cắt SD tại K

\(\Rightarrow K=SD\cap\left(BMN\right)\)

Áp dụng định lý Menelaus cho tam giác SOD:

\(\dfrac{ES}{EO}.\dfrac{BO}{BD}.\dfrac{KD}{KS}=1\Rightarrow1.\dfrac{1}{2}.\dfrac{KD}{SK}=1\Rightarrow KD=2SK\)

\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}\)

NV
20 tháng 9 2021

undefined

16 tháng 9 2017

3 tháng 1 2020

Chọn C

Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD.

Gọi I là gioa điểm của BP và MN. Khi đó

NV
23 tháng 10 2021

undefined

NV
23 tháng 10 2021

a.

Nối BN kéo dài cắt AD tại E

\(\left\{{}\begin{matrix}E\in\left(BMN\right)\\E\in\left(SAD\right)\end{matrix}\right.\) \(\Rightarrow E=\left(BMN\right)\cap\left(SAD\right)\)

\(\left\{{}\begin{matrix}M\in SA\in\left(SAD\right)\\M\in\left(BMN\right)\end{matrix}\right.\) \(\Rightarrow M=\left(BMN\right)\cap\left(SAD\right)\)

\(\Rightarrow EM=\left(BMN\right)\cap\left(SAD\right)\)

b.

Gọi F là giao điểm EM và SD

Trong mp (SCD), nối FN kéo dài cắt SC kéo dài tại G

\(\Rightarrow G=SC\cap\left(BMN\right)\)

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

13 tháng 10 2018