K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

so sánh

a) 9920 và 999910

Ta có: 9920=(992)10=980110

Vì 9801<9999

=> 980110<999910

Vậy 9920<999910

21 tháng 12 2021

\(2^{333}< 3^{222}\)

21 tháng 12 2021

mình cần cách giải

22 tháng 9 2016

9920=9920

999910=(99101)10=99111

9920<99111

Vậy 920<999910

22 tháng 9 2016

ta có 9999= 99 .101. 
do đó \(9999^{10}\) = \(99^{10}\) * \(101^{10}\)
còn \(99^{20}\) = \(99^{10}\) * \(99^{10}\)
\(99^{10}\) < \(101^{10}\) nên \(99^{10}\) * \(99^{10}\) < \(99^{10}\) * \(101^{10}\)
vậy \(99^{20}\) < \(9999^{10}\)
 

13 tháng 9 2016

 ta có 9999= 99 *101. 
do đó 9999^10 = 99 ^10 * 101^10 
còn 99^20 = 99^10 * 99^10 
vì 99^10 < 101^10 nên 99^10 * 99^10 < 99 ^10 * 101^10 . 
vậy 99^20 < 9999^10. 
chào bạn

13 tháng 9 2016

cảm ơn

12 tháng 10 2018

a,

15^12=(3*5)^12=3^12*5^12

81^3*125^5=(3^4)^3*(5^3)^5=3^12*5^15

Vì 12<15 suy ra 5^12<5^15

Suy ra 3^12*5^12<3^12*5^15

12 tháng 10 2018

\(a.81^3.125^5=\left(3^4\right)^3.\left(5^3\right)^5=3^{12}.5^{15}=3^{12}.5^{12}.5^3=\left(3.5\right)^{12}.5^3=15^{12}.5^3>15^{12}\)

\(b.4^{20}.81^{12}=\left(2^2\right)^{20}.\left(9^2\right)^{12}=2^{40}.9^{24}=2^{20}.2^{20}.9^{20}.9^4=\left(2.9\right)^{20}.2^{20}.9^4=18^{20}.2^{20}.9^4>18^{20}\)

\(c.73^{75}=\left(73^3\right)^{25}=389017^{25}\)

\(107^{50}=107^{2.50}=\left(107^2\right)^{25}=11449^{25}\)

Vì \(389017^{25}>11449^{25}\Rightarrow73^{75}>107^{50}\)

5 tháng 8 2018

\(2^{50}=\left(2^5\right)^{10}=32^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}\)

Suy ra: 250 > 520

b)

\(9^{200}=\left(9^2\right)^{100}=81^{100}\)

Suy ra: 99100 > 81100

5 tháng 8 2018

\(5^{202}=\left(5^2\right)^{101}=25^{101}\)

\(2^{505}=\left(2^5\right)^{101}=32^{101}\)

Suy ra: 5202 < 2505