Hãy chứng minh rằng tích ba số tự nhiên liên tiếp chia hết cho 6 .
Giúp mình nha , mình cần trước 1h30 thứ 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
a) Gọi hai số tự nhiên liên tiếp là a , a + 1
Nếu a chia hết cho 2 thì bài toán đã được giải
Nếu a = 2k + 1 thì a + 1 = 2k + 2, chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán đã được giải
Nếu a = 3k + 1 thì a + 2 = 3k + 3 , chia hết cho 3
Nếu a = 3k + 2 thì a + 1 = 3k + 3 , chia hết cho 3
Bài này mik học rồi nên mik chắc chắn đúng luôn
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
Gọi 3 STN liên tiếp là : n,n+1,n+2 S=n+n+1+n+2 =3n+3 chia hết cho 3 Gọi 4 STN liên tiếp là : n,n+1,n+2,n+3 S=n+n+1+n+2+n+3 =6n+6 ko chia hết cho 4
Gọi 3 STN liên tiếp là : n,n+1,n+2 S=n+n+1+n+2 =3n+3 chia hết cho 3 Gọi 4 STN liên tiếp là : n,n+1,n+2,n+3 S=n+n+1+n+2+n+3 =6n+6 ko chia hết cho 4
a) Vì trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 => tích của chúng chia hết cho 2
b) + Nếu n lẻ thì n + 3 là số chẵn => n + 3 chia hết cho 2 => (n + 3).(n + 6) chia hết cho 2
+ Nếu n chẵn thì n + 6 là số chẵn => n + 6 chia hết cho 2 => (n + 3).(n + 6) chia hết cho 2
=> với mọi n thuộc N thì (n + 3).(n + 6) luôn chia hết cho 2
1a) Gọi tích 2 stn liên tiếp là n(n+1)
n có dạng 2k hoặc 2k+1
vậy tích của 2 stn liên tiếp chia hết cho 2
Áp dụng tính chất:Trong n stn liên tiếp luôn có 1 và cghir 1 stn chia hết cho n.
=>Trong 4 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 4,ít nhất 1 số chia hết cho 3 và ít nhất 1 số nữa chia hết cho 2.
=>Tích luôn chia hết cho 2*3*4=24.
Chỉ cminh đc tích chia hết cho 24 thôi ko chứng minh đc 48 đâu bn.
CHia hết cho 24 thôi chứ bạn vd 1.2.3.4=24 ko chia hết cho 48
Bạn vào câu hỏi tương tự ý , hoặc là link này nhé :
chứng minh rằng: tích ba số tự nhiên liên tiếp đều chia hết cho 6
đặt tích 3 số tự nhiên liên tiếp là T a= a* [a+1] * [a+2]
chứng minh T chia hết cho 2 chỉ có 2 trường hợp
nếu a chia hết cho 2 a là số chẵn suy ra T chia hết
nếu a chia 2 dư 1 a la so le suy ra a + 1 chia hết cho 2 suy raT chia hết cho 2
chứng minh T chia hết cho 3 có 3 trường hợp
nếu a chia hết cho 3 suy ra T chia hết cho 3
nếu T chia 3 dư 1 suy ra a + 1 chia hết cho 3 suy ra T chia hết cho 3
nếu chia hết cho 3 dư 2 suy ra a+2 chia hết cho 3 suy ra T CHIA HẾT CHO 3
2 và 3 nguyên tố cùng nhau
suy ra T chia hết cho 2*3=6