K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

a) Gọi 2 số chẵn đó là 2k và 2k + 2

Ta có : 2k ( 2k + 2 )

= 2k . 2 ( k + 1 )

= 4 . k . ( k + 1 )

ta có k và k+1 là 2 số liên tiếp => k . ( k + 1 ) chia hết cho 2

=> 4 . k . ( k + 1 ) chia hết cho 8 ( đpcm )

5 tháng 10 2018

b) Gọi 3 số chẵn liên tiếp là 2a - 2, 2a và 2a + 2

Ta có: (2a - 2)2a(2a + 2)

= (4a2 - 4)2a

= 8a(a2 - 1)

= 8a(a - 1)(a + 1)

Vì a, a - 1 và a + 1 là ba số nguyên liên tiếp 

=> a(a - 1)(a + 1) ⋮ 2 và 3

Mà ƯCLN(2, 3) = 0 => a(a - 1)(a + 1) ⋮ 6

=> 8a(a - 1)(a + 1) ⋮ 48

Hay (2a - 2)2a(2a + 2)  ⋮ 48

Vậy tích 3 số chẵn liên tiếp chia hết cho 48

12 tháng 7 2021

bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên

gọi 2 số chẵn liên tiếp đó là: 2k,2k+2

2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8

gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4

2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)

k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)

từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1

câu c, tương tự vậy

ASDWE RHTYJNHWSAVFGB

3 tháng 11 2015

a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm

b . Gọi ba số chẵn liên tiếp là 2a,2a + 2 , 2a + 4 ( a \(\in\) N ) Xét tích :
                2a.(2a + 2).(2a + 4) = 8a(a + 1)(a + 2)

  Chứng minh rằng a(a + 1)(a + 2) chia hết cho 3 và chia hết cho 2.
c. Ta có 384 = 2\(^7.3\)

Tích 4 số chẵn liên tiếp sẽ có dạng : \(2^4.n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\)
Ta cần c/m tích \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) chia hết cho \(2^3.3\) hay chia hết cho 8 và cho 3( vì 8,3 là số nguyên tố cùng nhau)

L-I-K-E nha ! Mình đã bỏ thời gian ra giải cho bạn rồi đấy

3 tháng 11 2015

a. Gọi 2 số chẵn liên tiếp đó là 2a ; 2a + 2 
=> 2a.(2a+2)chia hết cho 2 (1)
2a. (2a+2) = 2a.2a + 2a .2 = 4.a.a+4.a=4.(a.a+a) 
=> 2a(2a+2) chia hết cho 4 (2)
từ (1) và (2)  2a.(2a+2) chia hết cho 8
Mấy bài kia tương tự

30 tháng 10 2015

A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên) 
            Ta có:

2k.(2k+2) =4k^2+4k =4k.(k+1) 
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 
=>k(k+1) chia hết cho 2 
=> 4k(k+1) chia hết cho 2*4=8 

=>4k(k+1) chia hết cho 8(ĐPCM)

30 tháng 10 2015

Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên) 
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1) 
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 
Nên k(k+1) chia hết cho 2 
=> 4k(k+1) chia hết cho 2*4=8 

=> 4k(k+1) chia hết cho 8

11 tháng 11 2018

1.

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5

Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4

Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120

2.(Tương tự)

3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16

Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)

Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.

4.

Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128

Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)

Do đó tích chia hết cho 3*128=384

5.

\(m^3-m=m\left(m-1\right)\left(m+1\right)\)

Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

Nên \(m^3-m\)chia hết cho 2*3=6

22 tháng 10 2017

a) Gọi 2 số chẵn liên tiếp là: 2k; 2k+2

    Theo đề bài, ta có: 2k(2k+2) chia hết cho 8

    Để 2k(2k+2) chia hết cho 8 thì 2k(2k+2) phải chia hết cho 2 (vì  8 = 2.2.2)

    Mà 2k(2k+2) chiia hết cho 2 vì có 1 thừa số 2 trong biểu thức

=> 2k(2k+2) chia hết cho 8

    

3 tháng 10 2016

a ) 1.2.3.4 = 24 : 24

c ) 2.4.6 = 48 : 48

27 tháng 11 2021

Tích 3 số nguyên chẵn liên tiếp thì sẽ có 1 số chia hết cho 2, 4 và 6

Vậy tích đó chia hết cho \(2\cdot4\cdot6=48\left(đpcm\right)\)

27 tháng 11 2021

Bài giải

Vì trong 4 số tự nhiên chẵn có ít nhất 1 số chia hết cho 4
Và 2 số còn lại chia hết cho 2
=> Chia hết cho 2 x 2 x 4 = 16
Mà trong 3 số đó phải có 1 số chia hết cho 3
= > Tích chia hết cho : 3 . 16 = 48
=> Tích của 3 số tự nhiên chẵn liên tiếp thì chia hết cho 48.