K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

Từ giả thiết suy ra : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c^2+ac+bc}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{ab\left(c^2+ac+bc\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(c^2+bc+ac\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\) hoặc \(b+c=0\) hoặc \(a+c=0\)

Nếu a + b = 0 thì c = 2014 thay vào M : 

\(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{a^{2013}+b^{2013}}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}=\frac{\left(a+b\right).A}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}\)

\(=\frac{1}{c^{2013}}=\frac{1}{2014^{2013}}\) (A là một nhân tử trong phân tích a2013 + b2013 thành nhân tử)

Tương tự với các trường hợp còn lại.

Vậy \(M=\frac{1}{2014^{2013}}\) 

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

15 tháng 7 2019

\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)

=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=>a=-b hoặc a=-c hoặc b=-c (1)

=>a=1 hoăc b=1 hoặc c=1 (2)

từ 1 và 2 => Q=1

27 tháng 1 2017

cái chỗ a+c+1 la "ac+c+1" nha, mình viết nhầm

27 tháng 1 2017

ta có: \(\frac{2013a^2bc}{ab+2013a+2013}\)\(\frac{2013.ab.ac}{ab+ab.ac+abc}\)\(\frac{2013.ab.ac}{ab.\left(ac+c+1\right)}\)\(\frac{2013ac}{ac+c+1}\)

\(\frac{ab^2c}{bc+b+2013}\)\(\frac{abc.b}{bc+b+abc}\)\(\frac{2013b}{b\left(ac+c+1\right)}\)\(\frac{2013}{ac+c+1}\)

\(\frac{abc^2}{ac+c+1}\)\(\frac{abc.c}{ac+c+1}\)\(\frac{2013c}{ac+c+1}\)

Cộng cả 3 phân thức cùng mẫu thức ta có phân thức cuối cùng là:

P=\(\frac{2013.\left(ac+c+1\right)}{ac+c+1}\)=2013

17 tháng 12 2017

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

hay \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

27 tháng 8 2020

Đặt \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k\Rightarrow\hept{\begin{cases}a=2012k\\b=2013k\\c=2014k\end{cases}}\)

A = 4( a - b )( b - c ) - ( c - a )2

= 4( 2012k - 2013k )( 2013k - 2014k ) - ( 2014k - 2012k )2

= 4.( -k ).( -k ) - ( 2k )2

= 4k2 - 4k2 = 0