K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

a) Tương tự 1A. Ta chứng minh được A thuộc đường thẳng PQ.

b) Ta có:

PA//BM,PA= BM

AQ//MC, AQ = MC

Suy ra BCQP là hình bình hành

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

Do đó: AMDN là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

c: Ta có: D và E đối xứng nhau qua AB

nên AD=AE

=>ΔADE cân tại A

mà AB là đường trung trực

nên AB là tia phân giác của góc DAE(1)

Ta có: D và F đối xứng nhau qua AC

nên AC là đường trung trực của DF

=>AD=AF

=>ΔADF cân tại A

mà AC là đường trung trực của DF

nên AC là tia phân giác của góc DAF(2)

Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)

Do đó: F,A,E thẳng hàng

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét tứ giác AMBP có

D là trung điểm chung của AB và MP

MA=MB

Do đó: AMBP là hình thoi

=>ABlà phân giác của góc MAP(1)

c: Xét tứ giác AMCQ có

E là trung điểm chung của AC và MQ

MA=MC

Do đó: AMCQ là hình thoi

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*90=180 độ

=>P,A,Q thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

24 tháng 8 2019

Ta có EBFA, FAGD, GDHC đều là hình hành. Vậy BECH cũng là hình bình hành.

Vậy E đối xứng với H qua N.

a: Ta có: E và D đối xứng nhau qua AB

nên AB là đường trung trực của ED

Suy ra: AB\(\perp\)ED tại I và I là trung điểm của ED

Xét ΔAEI vuông tại I và ΔADI vuông tại I có 

AI chung

EI=DI

Do đó: ΔAEI=ΔADI

17 tháng 10 2016

English is not math, Okay!

17 tháng 10 2016

NO. OK?

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE(1)

Ta có: D và F đối xứng nhau qua AC

nên AD=AF(2)

Từ (1) và (2) suy ra AE=AF

b: Khi E đối xứng với F qua A thì A là trung điểm của EF

Xét ΔEDF có 

DA là đườg trung tuyến

DA=EF/2

Do đó: ΔEDF vuông tại E

=>\(\widehat{BAC}=90^0\)