So sánh:
\(\frac{2\cdot4+2\cdot4\cdot8+4\cdot8\cdot16+8\cdot16\cdot32}{3\cdot4+2\cdot6\cdot8+4\cdot12\cdot16+8\cdot24\cdot32}\)với \(\frac{202}{304}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2.4+2.4.8+4.8.16+8.16.32}{3.4+2.6.8+4.12.16+8.24.32}\)
\(B=\frac{2.4+2.4.8+4.2.4.16+2.4.16.32}{3.4+2.2.3.2.4+4.3.4.16+2.4.8.3.32}\)
\(B=\frac{2.4.\left(1+8+4.16+16.32\right)}{3.4.\left(1+2.2.2+4.16+2.8.32\right)}\)
\(B=\frac{2.4.\left(1+8+4.16+16.32\right)}{3.4.\left(1+8+4.16+16.32\right)}\)
\(B=\frac{2}{3}\)
Chúc bn học tốt !!!!
\(=\dfrac{8+8\cdot8+8\cdot64+8\cdot512}{12+12\cdot8+12\cdot64+12\cdot512}=\dfrac{8}{12}=\dfrac{2}{3}\)
=\(\frac{6\left(1+8+27+64\right)}{12\left(1+16+54+128\right)}\)
=\(\frac{6.100}{12.199}\)
=\(\frac{50}{199}\)
Tk mình với nha mọi người!!!!!
\(\frac{1x2x3+2x4x6+3x6x9+4x8x12}{1x3x4+4x6x8+6x9x12+8x12x16}\)
\(\frac{6x\left(1+8+27+64\right)}{12x\left(1+16+54+128\right)}=\frac{6x100}{12x199}=\frac{50}{199}\)
\(A=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(A=\frac{1.2.\left(1+2^2+3^2+4^2+5^2\right)}{3.4.\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1.2}{3.4}\)
\(A=\frac{1}{6}\)
Ta thấy : \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy B > A
Theo đề bài, ta có:
\(A=\frac{1\times2+2\times4+3\times6+4\times8+5\times10}{3\times4+6\times8+9\times12+12\times16+15\times20}\)
\(A=\frac{1\times2\times\left(1+2^2+3^2+4^2+5^2\right)}{3\times4\times\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1\times2}{3\times4}\)
\(A=\frac{1}{6}\)
Ta thấy rằng: \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy \(B>A\)
tử số : 2.4 + 4.8 + 8.12 + 12.16 + 16.20
= 2.(1.2+2.4+4.6+6.8+8.10)
ta được 2. A=( 1.2+2.4+4.6+6.8+8.10) / ( 1.2+2.4+4.6+6.8+8.10)
=> A=2
\(A=\frac{8056}{2012.16-1982}\)= \(\frac{2014.4}{2012.15+2012-1982}\)=\(\frac{2014.4}{2012.15+30}\)=\(\frac{2014.4}{2012.15+2.15}\)=\(\frac{2014.4}{15.\left(2012+2\right)}=\frac{2014.4}{15.2014}=\frac{4}{15}\)
B = \(\frac{1.2.6+2.4.12+4.8.24+7.14.42}{1.6.9+2.12.18+4.24.36+7.42.63}\)
= \(\frac{1.2.3.2+2.2.2.12+4.4.2.24+7.7.2.42}{1.2.3.9+2.12.2.9+4.24.4.9+7.42.7.9}\)
= \(\frac{2\left(1.2.3+2.2.12+4.4.24+7.7.42\right)}{9\left(1.2.3+2.2.12+4.4.24+7.7.42\right)}\)
= \(\frac{2}{9}\)
Ta có: \(\frac{4}{15}=\frac{4.3}{15.3}=\frac{12}{45};\frac{2}{9}=\frac{2.5}{9.5}=\frac{10}{45}\)
Vì \(\frac{12}{45}>\frac{10}{45}\Rightarrow\frac{4}{15}>\frac{2}{9}\Rightarrow A>B\)
Vậy A > B