Cho x,y là các số nguyên
\(\frac{x^2-1}{2}=\frac{y^2-1}{3}\)
Chứng minh xy chia hết cho 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x,y là các số nguyên thỏa mãn:(x^2+1)chia hết cho(xy +1). Chứng minh (y^2+1) chia hết cho (xy+1)
Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1
hay x^2y^2 +y^2 chia hết xy+1.
Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1 Thêm và bớt 2xy+1
=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1
=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1 chia hết xy+1
\(M=\frac{\left(x^2-1\right)\left(x+1\right)+\left(y^2-1\right)\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\frac{x^3+x^2-x-1+y^3+y^2-y-1}{xy+x+y+1}\)
\(=\frac{\left(x^3+y^3\right)+\left(x^2+y^2\right)-\left(x+y\right)-2}{xy+x+y+1}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2-2xy-\left(x+y\right)-2}{xy+x+y+1}\)
\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+x^2\left(x+y\right)+y^2\left(x+y\right)-2xy\left(x+y\right)-2\left(x+y\right)-2xy-2}{xy+x+y+1}\)
\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+\left(x^2+y^2-2xy\right)\left(x+y\right)-2\left(x+y+xy+1\right)}{xy+x+y+1}\)
\(=\frac{\left(x+y-2\right)\left(x+y+xy+1\right)+\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}=x+y-2+\frac{\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}\)
x,y nguyên do đó để \(M\)nguyên thì \(\left(x-y\right)^2\left(x+y\right)\)chia hết cho \(xy+x+y+1\)
Dễ thấy \(\left(x-y\right)^2\left(x+y\right)\)không thể phân tích thành nhân tử \(xy+x+y+1\)nữa nên \(\left(x-y\right)^2\left(x+y\right)=0\)
Suy ra:
\(\hept{\begin{cases}x-y=0\\x+y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=-y\end{cases}}\)
Vậy:
\(x^2y^2-1=x^2.x^2-1=x^4-1\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)chia hết cho \(\left(x+1\right)\)
Vậy ta có đpcm
Cho hỏi bạn có phải từng là h/s trường Tiểu học thị trấn Rừng Thông ko?
Nếu đúng thì liệu cậu sẽ còn nhớ mình