Cho a,b,c >0 thoả mãn : a+2b+3c\(\ge20\). Tìm Min: p =a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+4/a>=2*căn a*4/a=4
b+9/b>=2*căn b*9/b=6
c+16/c>=2*căn c*16/c=8
=>3a/4+b/2+c/4+3/a+9/2b+4/c>=3+3+2=8
a+2b+3c>=20
=>a/4+b/2+3c/4>=5
=>S>=13
Dấu = xảy ra khi a=2; b=3; c=4
Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.
Lời giải:
Biến đổi $A$ :
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}=\frac{1}{4}(a+2b+3c)+\left(\frac{3a}{4}+\frac{3}{a}\right)+\left (\frac{b}{2}+\frac{9}{2b}\right)+\left (\frac{c}{4}+\frac{4}{c}\right)\)
Ta có: \(\frac{1}{4}(a+2b+3c)\geq \frac{20}{4}=5\)
Áp dụng BĐT AM-GM: \(\left\{\begin{matrix} \frac{3a}{4}+\frac{3}{a}\geq 3\\ \frac{b}{2}+\frac{9}{2b}\geq 3\\ \frac{c}{4}+\frac{4}{c}\geq 2\end{matrix}\right.\)
Do đó \(A\geq 5+3+3+2=13\) hay \(A_{\min}=13\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} a=2\\ b=3\\ c=4\end{matrix}\right.\)
Mấu chốt của bài toán là cách tìm điểm rơi.
\(P=\dfrac{5a+10b+15c}{4}+\left(\dfrac{3}{a}+\dfrac{3a}{4}\right)+\left(\dfrac{9}{2b}+\dfrac{b}{2}\right)+\left(\dfrac{4}{c}+\dfrac{c}{4}\right)\)
\(\ge\dfrac{5\left(a+2b+3c\right)}{4}+2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}+2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}+2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}\)
\(\Leftrightarrow P\ge\dfrac{5.20}{4}+3+3+2=33\)
Dấu "=" xảy ra khi a=2;b=3;c=4
Vậy \(P_{min}=33\)
\(A=\dfrac{3}{a}+\dfrac{3a}{4}+\dfrac{9}{2b}+\dfrac{b}{2}+\dfrac{4}{c}+\dfrac{c}{4}+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\)
Áp dụng bất đẳng thức Cô-si ta được:
\(\dfrac{3}{a}+\dfrac{3a}{4}\ge2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}=3\)
\(\dfrac{9}{2b}+\dfrac{b}{2}\ge2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}=3\)
\(\dfrac{4}{c}+\dfrac{c}{4}\ge2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}=2\)
\(\Rightarrow A\ge3+3+2+\dfrac{1}{4}\left(a+2b+3c\right)\)
\(\Rightarrow A\ge8+\dfrac{1}{4}.20=13\)
Vậy Min A=13. Dấu "=" xảy ra \(\Leftrightarrow\) a=2, b=3,c=4