Cho hình thang ABCD có hai đáy là AB và CD . Gọi E , F , K lần lượt là trung điểm của các cạnh AD , BC ,BD .
a ) Chứng minh EK//AB , KF//AB và E , F , K thẳng hàng
b) Gọi I là giao điểm EF và AC . Chứng minh : IA = IC
c ) Chứng minh : IE = KF và KE = IF
d ) Cho biết AB = 6cm , CD = 10cm . Tính IK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD có E và K lần lượt là trung điểm của AD và DB nên EK là đường trung bình tam giác ABD.
Vậy thì EK // AB
Hoàn toàn tương tự ta có ngay KF // DC, hay KF // AB.
Ta thấy, từ một điểm K có hai đoạn thẳng EK và KF cùng song song với AB. Theo tiên đề Oclit ta có E, K, F thẳng hàng.
b) Xét tam giác ABC có F là trung điểm BC, IF // AB nên IF là đường trung bình tam giác ABC.
Vậy thì AI = IC.
c) Xét tam giác ADC có E, I lần lượt là trung điểm của AD và AC nên EI là đường trung bình tam giác ADC.
Vậy thì \(EI=\frac{DC}{2}\)
Tương tự \(KF=\frac{DC}{2}\)
Vậy nên EI = KF.
Từ đó ta có: EI - KI = KF - KI hay EK = IF.
d) Ta có KF = DC/2 = 10 : 2 = 5 (cm)
IF = AB/2 = 6 : 2 = 3 (cm)
Vậy thì KI = KF - IF = 2 (cm)
a) Hình thang ABCD có:
E là trung điểm của AD (1)
F là trung điểm của BC
=> EF là đường trung bình của hình thang ABCD
nên EF// CD
=> EK // CD (2)
Từ (1)(2) => KA = KC
b) * Xét tam giác ACD có:
EA =ED (gt)
KA = KC (cmt)
=> EK là đường trung bình của tam giác ACD
=>EK = 1/2 CD
=>CD = 6 x 2
CD= 12 cm
* Tương tự chứng minh KF là đường trung bình của tam giác ABC
=> KF =1/2 AB
=>AB = 2 x 2
AB = 4 cm
- Hình vẽ:
a) - Xét △EDM có:
AB//DM (ABCD là hình thang có 2 đáy là AB và CD).
=>\(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) (định lí Ta-let) (1).
- Xét △FCM có:
AB//CM (ABCD là hình thang có 2 đáy là AB và CD).
=>\(\dfrac{BF}{MF}=\dfrac{AB}{CM}\) (định lí Ta-let) (2).
- Từ (1) và (2) và \(CM=DM\) (M là trung điểm BC) suy ra:
\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\).
- Xét △ABM có:
\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\) (cmt)
=>\(EF\)//\(AB\) (định lí Ta-let đảo)nên\(EF\)//\(AB\)//\(CD\)
b) -Xét △ADM có:
HE//DM (cmt).
=>\(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (định lí Ta-let). (3)
- Xét △ACM có:
EF//CM (cmt)
=>\(\dfrac{EF}{CM}=\dfrac{AE}{AM}\) (định lí Ta-let) (4)
- Từ (3) và (4) và \(DM=CM\) (M là trung điểm BC) suy ra: \(HE=EF\)
-Xét △BDM có:
EF//DM (cmt).
=>\(\dfrac{EF}{DM}=\dfrac{BF}{BM}\)(định lí Ta-let). (5)
- Xét △BCM có:
NF//CM (cmt)
=>\(\dfrac{NF}{CM}=\dfrac{BF}{BM}\) (định lí Ta-let) (6)
- Từ (5) và (6) và \(CM=DM\) (M là trung điểm BC) suy ra: \(NF=EF\)
Mà \(HE=EF\) nên \(HE=EF=NF=\dfrac{1}{3}HN\).
c) -Ta có: \(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (cmt)
=>\(\dfrac{DM}{HE}=\dfrac{AM}{AE}\).
=>\(\dfrac{DM}{HE}-1=\dfrac{EM}{AE}\) (7)
- Ta có: \(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) nên \(\dfrac{EM}{AE}=\dfrac{DM}{AB}\). (8)
- Từ (7) và (8) suy ra:
\(\dfrac{DM}{HE}-1=\dfrac{DM}{AB}\)
=>\(\dfrac{DM}{HE}=\dfrac{DM}{AB}+1=\dfrac{DM+AB}{AB}\)
=>\(HE=\dfrac{AB.DM}{AB+DM}=\dfrac{7,5.\left(12.\dfrac{1}{2}\right)}{7,5+\left(12.\dfrac{1}{2}\right)}=\dfrac{10}{3}\)
=>\(HN=3HE=3.\dfrac{10}{3}=10\) (cm).