K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

░░█▒▒▒▒░░░░▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒█ ░░░░█▒▒▄▀▀▀▀▀▄▄▒▒▒▒▒▒▒▒▒▄▄▀▀▀▀▀▀▄ ░░▄▀▒▒▒▄█████▄▒█▒▒▒▒▒▒▒█▒▄█████▄▒█ ░█▒▒▒▒▐██▄████▌▒█▒▒▒▒▒█▒▐██▄████▌▒█ ▀▒▒▒▒▒▒▀█████▀▒▒█▒░▄▒▄█▒▒▀█████▀▒▒▒█ ▒▒▐▒▒▒░░░░▒▒▒▒▒█▒░▒▒▀▒▒█▒▒▒▒▒▒▒▒▒▒▒▒█ ▒▌▒▒▒░░░▒▒▒▒▒▄▀▒░▒▄█▄█▄▒▀▄▒▒▒▒▒▒▒▒▒▒▒▌ ▒▌▒▒▒▒░▒▒▒▒▒▒▀▄▒▒█▌▌▌▌▌█▄▀▒▒▒▒▒▒▒▒▒▒▒▐ ▒▐▒▒▒▒▒▒▒▒▒▒▒▒▒▌▒▒▀███▀▒▌▒▒▒▒▒▒▒▒▒▒▒▒▌ ▀▀▄▒▒▒▒▒▒▒▒▒▒▒▌▒▒▒▒▒▒▒▒▒▐▒▒▒▒▒▒▒▒▒▒▒█ ▀▄▒▀▄▒▒▒▒▒▒▒▒▐▒▒▒▒▒▒▒▒▒▄▄▄▄▒▒▒▒▒▒▄▄▀ ▒▒▀▄▒▀▄▀▀▀▄▀▀▀▀▄▄▄▄▄▄▄▀░░░░▀▀▀▀▀▀ ▒▒▒▒▀▄▐▒▒▒▒▒▒▒▒▒▒▒▒▒▐ ▒█▀▀▄ █▀▀█ █▀▀█ █▀▀█   ▀▀█▀▀ █░░█ █▀▀   ▒█▀▀█ █▀▀█ █▀▀ █▀▀ ▒█░▒█ █▄▄▀ █░░█ █░░█   ░▒█░░ █▀▀█ █▀▀   ▒█▀▀▄ █▄▄█ ▀▀█ ▀▀█ ▒█▄▄▀ ▀░▀▀ ▀▀▀▀ █▀▀▀   ░▒█░░ ▀░░▀ ▀▀▀   ▒█▄▄█ ▀░░▀ ▀▀▀ ▀▀▀ ║████║░░║████║████╠═══╦═════╗ ╚╗██╔╝░░╚╗██╔╩╗██╠╝███║█████║ ░║██║░░░░║██║╔╝██║███╔╣██══╦╝ ░║██║╔══╗║██║║██████═╣║████║ ╔╝██╚╝██╠╝██╚╬═██║███╚╣██══╩╗ ║███████║████║████║███║█████║

5 tháng 9 2018

rap ng bn 4 chan

7 tháng 1 2020

bạn tự vẽ hình nha chờ mik giải

2 tháng 4 2020

/lmio;g;hiugl7iul,ỳuyjfjhhhj

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
8 tháng 3 2022

a) -Xét △AIC và △DIB có:

\(\widehat{IAC}=\widehat{IDB}=90^0\)

\(\widehat{AIC}=\widehat{DIB}\) (đối đỉnh)

\(\Rightarrow\)△AIC∼△DIB (g-g).

\(\Rightarrow\dfrac{AI}{DI}=\dfrac{CI}{BI}\) nên \(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)

b) -Xét △AID và △CIB có:

\(\widehat{AID}=\widehat{CIB}\) (đối đỉnh)

\(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)(cmt)

\(\Rightarrow\)△AID∼△CIB (c-g-c) nên \(\widehat{ABC}=\widehat{ADC}\)

c) -Có: \(\widehat{IAD}=\widehat{ICB}\) (△AID∼△CIB)

\(\widehat{ICA}=\widehat{IBD}\)(△AIC∼△DIB)

Mà \(\widehat{ICB}=\widehat{ICA}\) (CI là tia phân giác của \(\widehat{ACB}\))

\(\Rightarrow\widehat{IAD}=\widehat{IBD}\)
\(\Rightarrow\)△ADB cân tại D nên \(DA=DB\)

 

 

a: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền BA

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền CA

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: Ta có: \(AD\cdot AB=AE\cdot AC\)

nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE\(\sim\)ΔACB

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN\(\sim\)ΔACB