K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 b)tìm số tự nhiên n để 3n+4 chia hết cho n -12/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 163/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=64/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =605/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =56/ tìm a,b biết a/b=4/5 và [ a,b ] = 1407/tìm số nguyên dương  a,b biết a+b = 128...
Đọc tiếp

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 

b)tìm số tự nhiên n để 3n+4 chia hết cho n -1

2/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 16

3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6

4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60

5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5

6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140

7/tìm số nguyên dương  a,b biết a+b = 128 và (a ,b)=16

8/ a)tìm a,b biết a+b = 42 và [a,b] = 72 

b)tìm a,b biết a-b =7 , [a,b] =140

9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10

10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300

11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1)  chia hết cho 24

12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 ,  BCNN(a,b) = 180

 

2
29 tháng 10 2015

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

29 tháng 10 2015

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

24 tháng 8 2021

`A=2^{0}+2^{1}+2^{2}+....+2^{99}`

`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`

`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`

`=31+2^{5}.31+....+2^{95}.31`

`=31(1+2^{5}+....+2^{95})\vdots 31`

24 tháng 8 2021

\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)

\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)

1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a)...
Đọc tiếp

1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a) 5x = 125; b) 32x = 81 ; c) 52x-3 – 2.52 = 52 .3 8) Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương. 9) Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10. 10) Tính A = 4 + 2 2 + 2 3 + 2 4 +. . . + 2 20 11) Tìm x biết: ( x + 1) + ( x + 2) + . . . + ( x + 100) = 5750. 12) Chứng minh nếu: (ab + cd + eg )⋮ 11 thì abc deg ⋮ 11. 13) Chứng minh 10 28 + 8 ⋮ 72. 14) Hai lớp 6A;6B cùng thu nhặt một số giấy vụn bằng nhau. Lớp 6A có 1 bạn thu được 26 Kg còn lại mỗi bạn thu được 11 Kg ; Lớp 6B có 1 bạn thu được 25 Kg còn lại mỗi bạn thu được 10 Kg . Tính số học sinh mỗi lớp biết rằng số giấy mỗi lớp thu được trong khoảng 200Kg đến 300 Kg. 15) So sánh: 222333 và 333222 16) Tìm các chữ số x và y để số 1x8y2 chia hết cho 36 17) Tìm số tự nhiên a biết 1960 và 2002 chia cho a có cùng số dư là 28 18) Cho : S = 30 + 32 + 34 + 36 + ... + 32002 a) Tính S b) Chứng minh S ⋮ 7 19) Tìm số tự nhiên nhỏ nhất, biết rằng khi chia số này cho 29 dư 5 và chia cho 31 dư 28 20) Tìm chữ số tận cùng của các số sau: a) 571999 b) 931999 21) Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5. 22) Cho phân số b a (0 < a < b) cùng thêm m đơn vị (m > 0) vào tử và mẫu thì phân số mới lớn hơn hay bé hơn b a 23) Cho số 155*710* 4*16 có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong ba chữ số 1,2,3 một cách tuỳ thì số đó luôn chia hết cho 396. 24) Chứng tỏ rằng: 2x + 3y chia hết cho 17 ⇔ 9x + 5y chia hết cho 17 25) Một số tự nhiên chia cho 120 dư 58, chia cho 135 dư 88. Tìm a, biết a bé nhất 26) Người ta viết các số tự nhiên liên tiếp bắt đầu từ 1 đến 2006 liền nhau thành một số tự nhiên L . Hỏi số tự nhiên L có bao nhiêu chữ số 27) Có bao nhiêu chữ số gồm 3 chữ số trong đó có chữ số 4 28) Cho các số 0; 1; 3; 5; 7; 9. Hỏi có thể thiết lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ sáu chữ số đã cho.
Ai làm nhanh mik tick

0
9 tháng 11 2016

_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_

ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do

11 tháng 10 2021

a, Tham Khảo: tìm số nguyên tố p biết p+1 là tổng của n số nguyên dương đầu tiên, trong đó n là một số tự nhiên nào đó câu hỏi 1272037 - hoidap247.com

\(b,B=\left(1+2^2+2^4\right)+\left(2^6+2^8+2^{10}\right)+...+\left(2^{1996}+2^{1998}+2^{2000}\right)\\ B=\left(1+2^2+2^4\right)+2^6\left(1+2^2+2^4\right)+...+2^{1996}\left(1+2^2+2^4\right)\\ B=\left(1+2^2+2^4\right)\left(1+2^6+...+2^{1996}\right)\\ B=21\left(1+2^6+...+2^{1996}\right)⋮21\)

30 tháng 10 2021

a) nếu P = 2 thì P + 1 = 2 + 1 = 3 = 1 + 2 (chọn)

nếu P = 3 thì P + 1 = 3 + 1 = 4 = 1 + 2 + 1 (loại)

xét : ta có thể phân các tổng lớn hơn 3 thành tổng của 3 số hạng khác nhau nhưng số 4 thì không thể phân thành 3 số nguyên dương khác nhau

vì số 3 cũng không thể nên nhưng khác với số 4 là nó chỉ có thể phân thành tổng của 2 hay 1 số nguyên dương khác nhau

=>n = 2 và P = 2

cái này là mk tự nghĩ ra thôi nha , có gì sai mong mng chỉ bảo

30 tháng 10 2021

der4fdtfffffffffffeeeeeeqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqqwerttyyuiiop[]asdfghjkl;'\zxcvbnm,./1234567890-=

5 tháng 11 2021
Dudijdiddidijdjdjdjdj