a)1/1x5+1/5x9+1/9x13+1/13x17+1/17x21+1/21x25
b)7/12+7/20+7/30+......+7/380
c)1x2+2x3+3x4+........+20x21
AI NHANH NHẤT MK TÍCH CHO NHA
MK CẦN CỰC GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
)chứng tỏ
a)1/1x2+1/2x3+...+1/9x10 <1
b)1/1x2+1/2x3+...+1/99x100 <1
a)4/1x5+1/5x9+1/9x13+1/13x17+1/17x21<1
Lưu ý:"x" là phép nhân
Toán lớp 6
ái tích mình tíc lại nhà
CÂU a đề bài nó sao sao đó
mà gợi ý cho bạn ....bạn tính tổng đó ra bao nhiêu rồi đem so sánh cho 1
Đáp án + Giải thích các bước giải:
7/1×5+7/5×9+7/9×13+7/13×17+7/17×21
=7/4×(4/1×5+4/5×9+4/9×13+4/13×17+4/17×21)
=7/4×(1−1/5+1/5−1/9+1/9−1/13+1/13−1/17+1/17−1/21)
=7/4×(1+0+0+0+0−1/21)
=7/4×(1−1/21)
=7/4×2021
=5/3
nhớ tick nha
\(\dfrac{7}{1\times5}+\dfrac{7}{5\times9}+\dfrac{7}{9\times13}+\dfrac{7}{13\times17}\)\(+\) \(\dfrac{7}{17\times21}\)
= \(\dfrac{7}{4}\times\)( \(\dfrac{4}{1\times5}\)\(+\) \(\dfrac{4}{5\times9}\)\(+\) \(\dfrac{4}{9\times13}\)\(+\)\(\dfrac{4}{13\times17}\)\(+\)\(\dfrac{4}{17\times21}\))
= 7 \(\times\)(\(\dfrac{1}{1}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{17}-\dfrac{1}{21}\))
= 7\(\times\)(\(\dfrac{1}{1}-\dfrac{1}{21}\))
= \(\dfrac{7}{4}\)\(\times\) \(\dfrac{20}{21}\)
= \(\dfrac{5}{3}\)
gọi tổng này là một số A
ta có
A=7/4x(1/1x5+1/5x9+1/9x13+1/13x17+1/17x21)
A= 7/4x(1-1/5+1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21)
A= 7/4x(1-1/21)=7/4x20/21
suy ra A=5/3
7/1×5 + 7/5x9 + 7/9x13 + 7/13x17 + 7/17x21
= 7/4x(4/1x5 + 4/5x9 + 4/9x13 + 4/13x17 + 4/17x21)
= 7/4x(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + 1/17 - 1/21)
= 7/4x(1-1/20)
= 7/4x19/20
= 133/80
7/1x5+7/5x9+7/9x13+7/13x17+7/17x21=75,5 120 1609
ஜ۩۞۩ஜ Ủng hộ tui nhaaaa ஜ۩۞۩ஜ
Ai đi qua xin để lại 1 k !!!!!!
Bài 2:
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(3A=\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(3A=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
\(A=\frac{15}{34}\times\frac{1}{3}=\frac{5}{34}\)
Bài 2:
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(3A=\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(3A=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
\(A=\frac{15}{34}\times\frac{1}{3}=\frac{5}{34}\)
Đặt \(A=\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+\frac{7}{9\cdot13}+\frac{7}{13\cdot17}+\frac{7}{17\cdot21}\)
\(\frac{4}{7}A=\frac{4}{7}\left(\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+\frac{7}{9\cdot13}+\frac{7}{13\cdot17}+\frac{7}{17\cdot21}\right)\)
\(\frac{4}{7}A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(\frac{4}{7}A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(\frac{4}{7}A=1-\frac{1}{21}\)
\(\frac{4}{7}A=\frac{20}{21}\)
\(A=\frac{20}{21}:\frac{4}{7}=\frac{20}{21}\cdot\frac{7}{4}=\frac{5}{3}\)
Đặt biểu thức trên là A
\(\frac{4xA}{7}=\frac{4}{1x5}+\frac{4}{5x9}+\frac{4}{9x13}+\frac{4}{13x17}+\frac{4}{17x21}\)
\(\frac{4xA}{7}=\frac{5-1}{1x5}+\frac{9-5}{5x9}+\frac{13-9}{9x13}+\frac{17-13}{13x17}+\frac{21-17}{17x21}\)
\(\frac{4xA}{7}=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(\frac{4xA}{7}=1-\frac{1}{21}=\frac{20}{21}\Rightarrow A=\frac{20}{21}.\frac{7}{4}=\frac{5}{3}\)
\(A=\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+...+\frac{7}{17\cdot21}=\)
\(\frac{4}{7}A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+...+\frac{4}{17\cdot21}=\)
\(\frac{4}{7}A=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+...+\left(\frac{1}{17}-\frac{1}{21}\right)=\)
\(\frac{4}{7}A=1-\frac{1}{21}=\)
\(\frac{4}{7}A=\frac{20}{21}\)
\(A=\frac{20}{21}\div\frac{4}{7}\)
\(A=\frac{20}{21}\times\frac{7}{4}=\frac{140}{84}=\frac{5}{3}\)
\(\frac{7}{1.5}+\frac{7}{5.9}+\frac{7}{9.13}+...+\frac{7}{17.21}\)
\(=\frac{7}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{17.21}\right)\)
\(=\frac{7}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{7}{4}.\left(1-\frac{1}{21}\right)\)
\(=\frac{7}{4}.\frac{20}{21}=\frac{5}{3}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+\frac{3}{5.6}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\)
Gọi \(\left(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+......+\frac{3}{9.10}\right)\)là \(A\); \(\left(\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\right)\)là B . Ta có :
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}\cdot\frac{9}{10}=\frac{27}{10}\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{6}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{93}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\cdot\frac{49}{100}=\frac{539}{100}\)
\(\Rightarrow\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}=\frac{27}{10}+\frac{539}{100}=\frac{809}{100}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\frac{4}{15}=\frac{16}{45}\)
a) 1/1x5 + ... + 1/21x25
= 4 x (1-1/5 + 1/5 - 1/9 + ... + 1/21 - 1/25)
= 1/4 x (1 - 1/25)
= 1/4 x 24/25
= 6/25