cho tam giác ABC thay đổi có AB=6 và CA=2CB. TÌm GTLN của diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tui tick nha
Diện tích tam giác ABN = 1/4 diện tích tam giác ABC vì có chung chiều cao nối từ A xuống N và BN = 1/4 BC
Diện tích tam giác ABN là:
64 x 1/4 = 16 (cm2 )
Diện tích tam giác BMN = 1/2 diện tích tam giác ABN vì có chung chiều cao nối từ N xuống M và BM = 1/2 BA
Diện tích tam giác BMN là:
16 x 1/2 = 8 (cm2 )
Đáp số: 8 cm2
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
sabc=2/3 sbcd vì có đáy ab =2/3 cd và có cc đều là chiều cao của hình thang
mà sabc +sbcd = sabcd. suy ra sabc = 2/3+2 =2/5 sabcd
mà smcd = 1/2 ht theo quy tắc ( bn tự tìm nhé đây là cô mình dạy)
sabc=2/5*1/2=1/5 smcd
smcd là : 48:1/5=240
b)khi điểm M di chuyển thì SMCD kg thay đổi vì các cạnh khác sẽ nối lại và bù lại cho phần chuyển ik
a) \(S_{ABC}=\dfrac{2}{3}\times S_{MCD}\) (vì đường cao hạ từ \(C\) đến \(AB\) của tam giác \(ABC\) bằng đường cao hạ từ \(M\) đến \(CD\) của tam giác \(MCD\), \(AB=\dfrac{2}{3}\times CD\))
\(\Leftrightarrow S_{MCD}=\dfrac{3}{2}\times S_{ABC}=\dfrac{3}{2}\times48=72\left(cm^2\right)\)
b) Không thay đổi vì khoảng cách từ \(M\) đến \(CD\) không thay đổi.