K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

a) ta có : \(sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)=sin\alpha.cos\alpha\left(\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}\right)\)

\(=sin^2\alpha+cos^2\alpha=1\)

b) ta có : \(\left(sin^2\alpha+cos^2\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)

\(=1^2+1-2sin\alpha.cos=2\left(1-2sin\alpha.cos\alpha\right)\)

c) ta có : \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)\)

\(=\dfrac{sin^2\alpha}{cos^2\alpha}.cos^2\alpha=sin^2\alpha\)

24 tháng 8 2018

1) a) ta có : \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)\)

\(=tan^2\alpha.cos^2=sin^2\alpha\left(đpcm\right)\)

b) ta có : \(cos^2\alpha+tan^2\alpha.cos^2\alpha=cos^2\alpha.\left(1+tan^2\alpha\right)\)

\(=cos^2\alpha\left(1+\dfrac{sin^2\alpha}{cos^2\alpha}\right)=cos^2\alpha\left(\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\right)=cos^2\alpha.\dfrac{1}{cos^2\alpha}=1\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

a)

\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)

\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)

\(=2\sin ^2a\)

b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)

\(=1+\cos ^2a-1=\cos ^2a\)

\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)

c)

\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)

\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)

\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

d)

\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)

\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)

f)

\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)

\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)

\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)

12 tháng 8 2018

a) ta có : \(A=tan1.tan2.tan3...tan89\)

\(=\left(tan1.tan89\right).\left(tan2.tan88\right).\left(tan3.tan87\right)...\left(tan44.tan46\right).tan45\)

\(=\left(tan1.tan\left(90-1\right)\right).\left(tan2.tan\left(90-2\right)\right).\left(tan3.tan\left(90-3\right)\right)...\left(tan44.tan\left(90-44\right)\right).tan45\)

\(=\left(tan1.cot1\right).\left(tan2.cot2\right).\left(tan3.cot3\right)...\left(tan44.cot44\right).tan45\) \(=tan45=1\)

b) ta có \(B=\dfrac{sin\alpha+2cos\alpha}{3sin\alpha-4cos\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}-\dfrac{4cos\alpha}{cos\alpha}}\)

\(=\dfrac{tan\alpha+2}{3tan\alpha-4}=\dfrac{\dfrac{1}{2}+2}{\dfrac{3}{2}-4}=-1\)

ta có \(D=\dfrac{2sin^2\alpha-3cos^2\alpha}{4cos^2\alpha-5sin^2\alpha}=\dfrac{\dfrac{2sin^2\alpha}{cos^2\alpha}-\dfrac{3cos^2\alpha}{cos^2\alpha}}{\dfrac{4cos^2\alpha}{cos^2\alpha}-\dfrac{5sin^2\alpha}{cos^2\alpha}}\)

\(=\dfrac{2tan^2\alpha-3}{4-5tan^2\alpha}=\dfrac{2\left(\dfrac{1}{2}\right)^2-3}{4-5\left(\dfrac{1}{2}\right)^2}=\dfrac{-10}{11}\)