K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

\(\frac{B}{2}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\)

\(\frac{B}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)

\(\frac{B}{2}=\frac{100}{101}\)

\(B=\frac{200}{101}\)

23 tháng 8 2018

B = \(2\left(\frac{1}{1x2}+\frac{1}{2x3}+....+\frac{1}{100x101}\right)\)

B = \(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}...+\frac{1}{101}\right)\)

B = \(2\left(1-\frac{1}{101}\right)\)

B = \(2x\frac{100}{101}\)

B = \(\frac{200}{101}\)

26 tháng 3 2017

a) Đặt \(A=\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}\)

\(\Rightarrow A=\left(1^2+2^2+..........+100^2\right)\)\(.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+.....+100^2\right).\left(\frac{100}{101}\right)\)(a)

Đặt \(M=\left(1^2+2^2+........+100^2\right)\)

\(\Rightarrow M=1.1+2.2+.....+100.100\)

\(\Rightarrow M=1.\left(2-1\right)+2.\left(3-1\right)+....+100.\left(101-1\right)\)

\(\Rightarrow M=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(100.101-100\right)\)

\(\Rightarrow M=\left(1.2+2.3+.....+100.101\right)-\left(1+2+......+100\right)\)

\(\Rightarrow M=\left(1.2+2.3+......+100.101\right)-5050\)(1)

Đặt \(N=1.2+2.3+....+100.101\)

\(\Rightarrow3.N=1.2.3+2.3.3+......+100.101.3\)

\(\Rightarrow3N=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+100.101.\left(102-99\right)\)

\(\Rightarrow3N=\left(1.2.3-0\right)+\left(1.2.3-2.3.4\right)+.......+\left(100.101.102-100.101.99\right)\)

\(\Rightarrow3N=100.101.102-0\)

\(\Rightarrow N=343400\)

Thay N = 343400 vào 1) ta được:

M = 343400 - 5050 

=> M = 338350

Thay M = 338350 Vào (a) ta được:

A = 338350 . \(\frac{100}{101}\)

=> \(A=\frac{33835000}{101}\)

Vậy \(\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}=\frac{33835000}{101}=335000\)

b) Đặt \(B=\frac{2^2}{1.3}+\frac{3^2}{2.4}+..........+\frac{59^2}{58.60}\)

\(\Rightarrow B=\left(2^2+3^2+........+59^2\right).\left(\frac{1}{1.3}+\frac{1}{2.4}+.....+\frac{1}{58.60}\right)\)

Đặt \(G=2^2+3^2+.........+59^2\)VÀ \(H=\frac{1}{1.3}+\frac{1}{2.4}+.........+\frac{1}{58.60}\)

\(\Rightarrow G=2.2+3.3+.......+59.59\) VÀ \(2.H=\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{58.60}\)

Rồi bạn làm như ở phần a) ý

14 tháng 8 2016

\(\frac{1}{1x2}x\frac{4}{2x3}x\frac{9}{3x4}x...x\frac{10000}{100x101}=\frac{1x1}{1x2}x\frac{2x2}{2x3}x\frac{3x3}{3x4}x...x\frac{100x100}{100x101}\)

=\(\frac{1x2x3x...x100}{1x2x3x...x100}x\frac{1x2x3x...x100}{2x3x4x...x101}=1x\frac{1}{101}=\frac{1}{101}\)

10 tháng 8 2016

\(B=1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}.\)

\(B=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}+\frac{1}{100}\)

\(B=1+1-\frac{1}{100}=2-\frac{1}{100}\)

\(B=\frac{199}{100}\)

\(C=\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{n\left(n+1\right)}\)

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n}-\frac{1}{n+1}\)

\(C=1-\frac{1}{n+1}\)

\(C=\frac{n+1-1}{n+1}=\frac{n}{n+1}\)

10 tháng 8 2016

Áp dụng công thức tình dãy số ta có :

\(D=\frac{\left[\left(n-1\right):1+1\right].\left(n+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)

10 tháng 9 2015

 

(6x + 35 ) = 330 : 6

6x+35=55

6x=55-35

6x=20

x=20:6

x=10/3

7 tháng 7 2016

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{19.20}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{19.20}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2.\left(1-\frac{1}{20}\right)\)

\(=2.\frac{19}{20}=\frac{19}{10}\)

27 tháng 7 2019

Vãi cả nhân :V

\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+\frac{2}{5\cdot6}\\ =2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\right)\\ =2\left(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+\frac{5-4}{4\cdot5}+\frac{6-5}{5\cdot6}\right)\\ =2\left(\frac{2}{1\cdot2}-\frac{1}{1\cdot2}+\frac{3}{2\cdot3}-\frac{2}{2\cdot3}+\frac{4}{3\cdot4}-\frac{3}{3\cdot4}+\frac{5}{4\cdot5}-\frac{4}{4\cdot5}+\frac{6}{5\cdot6}-\frac{5}{5\cdot6}\right)\\ =2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{6}\right)\\ =2\left(1-\frac{1}{6}\right)\\ =2\cdot\frac{5}{6}=\frac{10}{6}\)

Chúc bạn học tốt nhaok.

27 tháng 7 2019

Ng ta năm nay mới lên lớp 6, dùng x là đúng r, ngày trc chúng mik cx vậy mà.

DD
9 tháng 8 2021

\(S=\frac{3}{\left(1\times2\right)^2}+\frac{5}{\left(2\times3\right)^2}+...+\frac{201}{\left(100\times101\right)^2}\)

\(=\frac{2^2-1^2}{\left(1\times2\right)^2}+\frac{3^2-2^2}{\left(2\times3\right)^2}+...+\frac{101^2-100^2}{\left(100\times101\right)^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{100^2}-\frac{1}{101^2}\)

\(=1-\frac{1}{101^2}\)

\(=\frac{10200}{10201}\)

29 tháng 6 2017

\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)

\(=\frac{4}{15}+\frac{9}{5}\)

\(=\frac{31}{15}\)

15 tháng 9 2020

              Bài làm :

Ta có :

\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}+\frac{2}{1\times2}+\frac{2}{2\times3}+...+\frac{2}{9\times10}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)

\(=\frac{31}{15}\)