Cho tam giác ABC cân tại A với đường cao AH. Từ H vẽ HD vuông góc AB và HE vuông góc AC. Chứng minh AD=AE. Chứng minh AH là trung trực của ED. Lấy điểm F trên tia đối của tia HD sao cho HF=HD. Chứng minh CF vuông góc DH. Gọi K là giao điểm của EH và AB. Xác định trực tâm I của tam giác AHK. Chứng minh KI song song DE.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DH
4 tháng 1 2017
d) Vì tam giác DHB=tam giác EHC(cmb)=>HD=HE(2 cạnh tương ứng)
Mà H thuộc EF và HD=HF(theo đề bài)
=>HE=HD=HF=DF/2
Tam giác DEF có đường trung tuyến EH bằng 1/2 đáy DF tương ứng=>Tam giác DEF vuông tại E.
12 tháng 5 2022
a: Xét tứ giác AEHD có \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
nên AEHD là hình chữ nhật
Suy ra: EH//AD; EH=AD: EA//HD; EA=HD
b: Vì AEHD là hình chữ nhật
nên AH=DE
c: Ta có: AEHD là hình chữ nhật
mà O là giao của hai đường chéo
nên OA=OE=OD=OH