Tìm GTNN B= căn x^2-10x+34 + căn x^2-10x+29
Giup e vs ạ cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x^2-10+25}\)=lx-5l=2
=>x=7 hoặc x=3
b) bình phường lên ta đc x^2-2x=25
từ đây bạn giải bình thường là đc chúc hk tốt
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)
mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)
từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1
b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)
=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')
mặt khác VP=5-2(x+1)2\(\le\)5(2')
từ (1') và (2')=> pt vô nghiệm
\(a,ĐK:x\in R\)
\(b,ĐK:\dfrac{-7}{8-10x}\ge0\Leftrightarrow8-10x< 0\left(-7< 0\right)\Leftrightarrow x>\dfrac{4}{5}\)
\(c,ĐK:\dfrac{24-6x}{-7}\ge0\Leftrightarrow24-6x\le0\left(-7< 0\right)\Leftrightarrow x\ge4\)
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)
\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)
\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)
Thay x = 79 vào biểu thức trên , ta có
\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)
\(=0+79+15\)
\(=94\)
Vậy \(P(x)=94\)khi x = 79
\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)
\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)
Thay x = 9 vào biểu thức trên , ta có
\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)
\(=0-9+10\)
\(=1\)
Vậy \(Q(x)=1\)khi x = 9
\(c.R(x)=x^4-17x^3+17x^2-17x+20\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Thay x = 16 vào biểu thức trên , ta có
\(R(16)=(16-16)(16^3-16^2+16)-16+20\)
\(=0-16+20\)
\(=4\)
Vậy \(R(x)=4\)khi x = 16
\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)
\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)
\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+....+x)-x+10\)
Thay x = 12 vào biểu thức trên , ta có
\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)
\(=0-12+10\)
\(=-2\)
Vậy \(S(x)=-2\)khi x = 12
Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện
Chúc bạn học tốt , nhớ kết bạn với mình
Bmin=5 xay ra dau= khi va chi khi x=5
\(B=\sqrt{x^2-10x+34}+\sqrt{x^2-10x+29}\)
\(=\sqrt{\left(x-5\right)^2+9}+\sqrt{\left(x-5\right)^2+4}\)\(\ge\)\(\sqrt{9}+\sqrt{4}=5\)
Vậy Min \(B=5\)khi \(x=5\)