Bài 1 : Tính Nhanh
\(\frac{2}{5\cdot7}+\frac{5}{7\cdot12}+\frac{8}{12\cdot20}+\frac{3}{140}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3\cdot7}+\frac{5}{7\cdot12}+\frac{1}{12\cdot13}+\frac{7}{13\cdot20}+\frac{8}{20\cdot28}\)
\(\frac{4}{3\cdot7}+\frac{5}{7.12}+..+\frac{8}{20\cdot28}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{28}\)
\(=\frac{1}{3}-\frac{1}{28}+0+...+0\)
\(=\frac{25}{84}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{28}\)
\(=\frac{1}{3}-\frac{1}{28}\)
\(=\frac{25}{84}\)
\(\frac{4}{3\cdot7}+\frac{5}{7\cdot12}+\frac{1}{12\cdot13}+\frac{7}{13\cdot20}+\frac{3}{20\cdot23}\)
\(\frac{4}{3.7}+\frac{5}{7.12}+\frac{1}{12.13}+\frac{7}{13.20}+\frac{3}{20.23}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{23}=\frac{1}{3}-\frac{1}{23}=\frac{20}{69}\)
\(=\frac{219}{520}=\frac{155052}{368160}\)
\(=\frac{303}{708}=\frac{157560}{368160}\)
\(\frac{155052}{368160}< \frac{157560}{368160}\)
VẬY \(\frac{303}{708}\)LỚN HƠN
A=1.5.(3.2)+2.10.(6.2)+3.15.(9.2)+4.20.(12.2)+5.25.(15.2)
1.3.5+2.6.10+3.9.15+4.12.20+5.15.25
A=1.5.3+2.10.6+3.15.9+4.20.12+5.25.15(2.2.2.2.2)
1.3.5+2.6.10+3.9.15+4.12.20+5.15.25
A=2.2.2.2.2
A=32
\(\frac{1\cdot3\cdot5\cdot2+2\cdot10\cdot6\cdot2+3\cdot15\cdot9\cdot2+4\cdot20\cdot12\cdot2+5\cdot25\cdot15\cdot2}{1\cdot3\cdot5+2\cdot10\cdot6+3\cdot15\cdot9+4\cdot20\cdot12+5\cdot25\cdot15 }\)
\(2\cdot2\cdot2\cdot2\cdot2=2^5\)
\(=32\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{11}{11}-\frac{1}{11}\)
\(=\frac{10}{11}\)
Chúc bạn học tốt !!!
\(\frac{2}{5\cdot7}+\frac{5}{7\cdot12}+\frac{8}{12\cdot20}+\frac{3}{140}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{20}+\frac{3}{140}\)
\(=\frac{1}{5}-\frac{1}{20}+\frac{3}{140}\)
\(=\frac{3}{20}+\frac{3}{140}=\frac{6}{35}\)
\(\frac{2}{5.7}\)+ \(\frac{5}{7.12}\)+ \(\frac{8}{12.20}\)+ \(\frac{3}{140}\).
= \(\frac{1}{5}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{12}\)+ \(\frac{1}{12}\)- \(\frac{1}{20}\)+ \(\frac{3}{140}\).
= \(\frac{1}{5}\)- \(\frac{1}{20}\)+ \(\frac{3}{140}\).
= \(\frac{20}{100}\)- \(\frac{5}{100}\)+ \(\frac{3}{140}\).
= \(\frac{15}{100}\)+ \(\frac{3}{140}\).
= \(\frac{3}{20}\)+ \(\frac{3}{140}\).
= \(\frac{21}{140}\)+ \(\frac{3}{140}\).
= \(\frac{24}{140}\).
= \(\frac{6}{35}\).