K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2021

\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)

\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)

\(\Rightarrow P=4\)

\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)

\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)

\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)

-4 ở đâu ra vậy ạ

 

29 tháng 7 2021

Ta có: \(cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}\)

Lại có: \(\dfrac{1}{cot\alpha}=tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{sin^2\alpha}{cos\alpha.sin\alpha}=\dfrac{1}{\sqrt{5}}\)

\(\Rightarrow A=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}+\dfrac{sin^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}+\dfrac{1}{\sqrt{5}}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)

Ta có : cot α = \(\sqrt{5}\Rightarrow\dfrac{cos\alpha}{sin\alpha}=\sqrt{5}\Rightarrow cos\alpha=\sqrt{5}.sin\alpha\)

\(A=\dfrac{sin^2\alpha+cos^2\alpha}{sin\alpha.cos\alpha}\)

\(A=\dfrac{sin^2\alpha+\left(\sqrt{5}sin\alpha\right)^2}{sin\alpha.\sqrt{5}sin\alpha}=\dfrac{sin^2\alpha+5sin^2\alpha}{\sqrt{5}sin^2\alpha}\)

\(A=\dfrac{6sin^2\alpha}{\sqrt{5}sin^2\alpha}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)

7 tháng 4 2022

mình làm r nha

https://hoc24.vn/cau-hoi/biet-cotadfrac12-gia-tri-bieu-thuc-adfrac4sinalpha5cosalpha2sinalpha-3cosalpha-bang-bao-nhieughi-ro-tung-loi-giai-nha.5724337531039

21 tháng 10 2021

A

21 tháng 10 2021

Chọn A

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

NV
8 tháng 2 2022

\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)

\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)

8 tháng 2 2022

a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)

b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)

Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)

\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)