Cho hình vuông ABCD , cạnh a. E là điểm bất kì trên CD ( E khác C và D). AE và CD cắt nhau ở F. Kẻ tia Ax vuông góc với AE tại A , cắt đường thẳng CD tại I
a) C/m góc AEI = 45 độ
b) C/m \(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự chứng minh
b, HS tự chứng minh
c, Tứ giác ACFK nội tiếp (I) với I là trung điểm của KF => BD là trung trực AC phải đi qua I
d, HS tự chứng minh
a.
Xét hai tam giác vuông ABE và ADH:
\(AD=AB\)
\(\widehat{BAE}=\widehat{DAH}\) (cùng phụ \(\widehat{DAE}\))
\(\Rightarrow\Delta_vABE=\Delta_vADH\) (góc nhọn-cạnh góc vuông) (1)
\(\Rightarrow AH=AE\)
\(\Rightarrow\Delta AHE\) vuông cân tại A
b. Cũng từ (1) ta có \(BE=DH\)
Xét hai tam giác vuông ABE và FDA có:
\(\widehat{BAE}=\widehat{AFD}\) (so le trong)
\(\Rightarrow\Delta_vABE\sim\Delta_vFDA\)
\(\Rightarrow\dfrac{AB}{DF}=\dfrac{BE}{AD}\Rightarrow AB.AD=BE.DF\Rightarrow AB^2=HD.DF\) (do AD=AB và BE=HD)
c. Ta có: \(\left\{{}\begin{matrix}S_{HAF}=\dfrac{1}{2}AH.AF\\S_{HAF}=\dfrac{1}{2}AD.HF\end{matrix}\right.\) \(\Rightarrow AH.AF=AD.HF\)
\(\Rightarrow\dfrac{1}{AD}=\dfrac{HF}{AH.AF}\Rightarrow\dfrac{1}{AD^2}=\dfrac{HF^2}{AH^2.AF^2}=\dfrac{AH^2+AF^2}{AH^2.AF^2}\)
\(\Leftrightarrow\dfrac{1}{AD^2}=\dfrac{1}{AF^2}+\dfrac{1}{AH^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (do AH=AE theo chứng minh câu a)
\(\Leftrightarrow\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\) cố định (đpcm)
a, Ta có: BAE + DAE = BAD => BAE + DAE = 90o
và IAD + DAE = IAE => IAD + DAE = 90o
=> BAE = IAD
Xét △ABE vuông tại B và △ADI vuông tại D
Có: AB = AD (ABCD là hình vuông)
BAE = DAI (cmt)
=> △ABE = △ADI (cgv-gnk)
=> AE = AI (2 cạnh tương ứng)
=> △AEI cân tại A
Mà IAE = 90o
=> △AEI vuông cân tại A
=> AEI = 45o
b, Xét △ABE có: AB2 + BE2 = AE2 (định lý Pytago)
Vì AB // CD (ABCD là hình vuông) => \(\frac{AE}{EF}=\frac{BE}{EC}\)(định lý Thales) \(\Rightarrow\frac{AE}{AF}=\frac{BE}{BC}\)
\(\Rightarrow\frac{AE}{AF}=\frac{BE}{AB}\) (BC = AB <= ABCD là hình vuông )\(\Rightarrow AF=\frac{AE.AB}{BE}\)
Ta có: \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AE^2}+\frac{1}{\left(\frac{AE.AB}{BE}\right)^2}=\frac{1}{AE^2}+\frac{BE^2}{AE^2.AB^2}=\frac{AB^2}{AE^2.AB^2}+\frac{BE^2}{AE^2.AB^2}\)
\(=\frac{AB^2+BE^2}{AE^2.AB^2}=\frac{AE^2}{AE^2.AB^2}=\frac{1}{AB^2}\) (đpcm)
c, Xét △ABE vuông tại B có: AE > AB (quan hệ giữa cạnh huyền và cạnh góc vuông) => AE2 > AB2 \(\Rightarrow\frac{1}{2}.AE^2>\frac{1}{2}.AB^2\)
\(\Rightarrow\frac{1}{2}.AE.AI>\frac{1}{2}.a^2\)\(\Rightarrow S_{\text{△}AEI}>\frac{1}{2}a^2\)
Mk sửa lại đề xíu nhé! "E là điểm bất kì trên BC( E khác B và C)" nha!