Tính giá trị của biểu thức
A = x14 - 10x13 + 10x12 - 10x11 + ... + 10x2 - 10x + 10 tại x = 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(P=\left(x^{14}-9x^{13}\right)-\left(x^{13}-9x^{12}\right)+\left(x^{12}-9x^{11}\right)-...+\left(x^2-9x\right)-\left(x-9\right)+1\)
\(=x^{13}\left(x-9\right)-x^{12}\left(x-9\right)+x^{11}\left(x-9\right)+...+x\left(x-9\right)-\left(x-9\right)+1\)
\(P\left(9\right)=1\)
b)
\(Q=\left(x^{15}-7x^{14}\right)-\left(x^{14}-7x^{13}\right)+\left(x^{13}-7x^{12}\right)-...-\left(x^2-7x\right)+\left(x-7\right)+2\)
\(=x^{14}\left(x-7\right)-x^{13}\left(x-7\right)+x^{12}\left(x-7\right)-...-x\left(x-7\right)+\left(x-7\right)+2\)
\(Q\left(7\right)=2\)
a, \(A=x^3-30x^2-31x+1\)
\(=x^3-31x^2+x^2-31x+1\)
\(=x^2\left(x-31\right)+x\left(x-31\right)+1\)
\(=\left(x^2+x\right)\left(x-31\right)+1\)
Thay x = 31 \(\Rightarrow A=1\)
Vậy A = 1 khi x = 31
b, tách ra làm tương tự phần a
C = x14 - 10x13 + 10x13 -10x11 + ... + 10x12 -10x + 10
= x14 - ( x + 1 )x13 + ( x + 1)x12 -... - ( x + 1)x + 10 + 1
=x14 -x14 - x13 + x13 + x12 - ...- x2 - x + 10 + 1
= 1
Không chắc lắm
x=9=>10=x+1
thqy 10=x+1 vào A
ta có A=x^14 - (x+1)x^13+(x+1)x^12-(x+1)x^11+...+(x+1)x^2-(x+1)x+10
=x^14-x^14-x^13+x^13+x^12-x^12-x^11+...+x^3+x^2-x^2_x+10
=x+10
mà x=9
=>A=19
Ta có 10=9+1=x+1(Vì x=9)
=>B= x14-(x+1)x13+(x+1)x12-(x+1)x11+.........-(x+1)x+10
=>B= x14-x14-x13+x13+x12-x12-x11+.....-x2-x+10
=>B=-x+10
Thay x=9, ta có
B=-9+10=1
\(B=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
a) Ta có : \(x=31\Rightarrow30=x-1\)
Thay vào biểu thức ta được:
\(A=x^3-\left(x-1\right).x^2-x^2+1=x^3-x^3+x^2-x^2+1=1\)
b) Ta có: \(x=9\Rightarrow x+1=10\)
Thay vào biểu thức ta được
\(B=x^{14}-\left(x+1\right).x^{13}+\left(x+1\right).x^{12}-\left(x+1\right).x^{11}+.....+x^2.\left(x+1\right)=\left(x+1\right).x+\left(x+1\right)\)
\(\Leftrightarrow B=x^{14}-x^{14}-x^{13}+x^{13}+....+x^3+x^2=x^2+2x+1\)
\(\Leftrightarrow B=x^2-x^2-2x-1=-2.9-1=-19\)
\(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
`5x(4x^2-2x+1)-2x(10x^2-5x-2)`
`= 20x^3-10x^2+5x - (20x^3-10x^2-4x)`
`=9x`
Thay `x=15` có: `9.15=135`.
Mk k ghi lại đề mà lm lun nha!
= 914 - (9+1)913 + (9+1)912 - (9+1)911 +...+ (9+1)92 - (9+1)9 + 10
= 914 - 914 - 913 + 913 + 912 - 912 - 911 +...+ 93 + 92 -92 + 9 +10
= 9 + 10 = 19
Bài mk giải k pk kết quả đúng or sai, có j sửa giùm mk lun nha
\(A=x^{14}-10x^{13}+10x^2-10x^{11}\)\(+...+10x^{12}-10x+10\)
Thay x = 9 vào biểu thức A
\(\Rightarrow A=9^{14}-\left(9+1\right).9^{13}+\left(9+1\right).9^{12}\)\(-...+9+1\)
\(\Rightarrow A=9^{14}-9^{14}-9^{13}+9^{12}+...-9+9+1\)
\(\Rightarrow A=1\)
P/s tham khảo thêm trên google