Giúp mình câu này với!
Cho tam giác ABC. Tập hợp những điểm M sao cho: \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC} +\overrightarrow{MB}\right|\)là:
A. M nằm trên đường trung trực của BC.
B. M nằm trên đường tròn tâm I, R = 2AB với I nằm trên cạnh AB sao cho IA = 2IB.
C. M nằm trên đường trung trực của IJ với I, J lần lượt là trung điểm của AB và BC.
D. M nằm trên đường tròn tâm I, R = 2AC với I nằm trên cạnh AB sao cho IA = 2IB.
Lời giải:
Gọi $H$ là trung điểm của $AB$, $K$ là trung điểm $CB$
\(\Rightarrow \overrightarrow{HA}+\overrightarrow{HB}=0; \overrightarrow{KC}+\overrightarrow{KB}=0\)
Khi đó:
\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MH}+\overrightarrow{HA}+\overrightarrow{MH}+\overrightarrow{HB}|=|2\overrightarrow{MH}|\)
\(|\overrightarrow{MC}+\overrightarrow{MB}|=|\overrightarrow{MK}+\overrightarrow{KC}+\overrightarrow{MK}+\overrightarrow{KB}|=|2\overrightarrow{MK}|\)
Vì \(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MC}+\overrightarrow {MB}|\) nên \(|2\overrightarrow{MH}|=|2\overrightarrow{MK}|\)
\(\Rightarrow |\overrightarrow{MH}|=|\overrightarrow{MK}|\)
\(\Rightarrow MH=MK\) hay $M$ nằm trên đường trung trực của $HK$
Do đó dễ dàng thấy C là đáp án đúng.