Với mọi số nguyên không âm n, chứng minh rằng số \(2^{5n+3}+5^n.3^{n+1}\) chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
Phân tích 5=1.5
nếu n^5+5n^3+4n muốn chja hết cho 5thì phải chja hết cho lân lượt 8,5,3
ta chứng minh như sau:
n^5-5n^3+4n=
(n-2)(n-1)n(n+1)(n+2)
chja hết cho 8 vì tích 2 số chẵn liên tiếp chia het cho 8, gjả sử n lẻ=>(n-1)(n+1) chja het 8, nếu n chẵn =>n(n+1) chja het 8,
.cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5,
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3.
Từ chứng mjh trên suy ra dfcm cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5,
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3.
Từ chứng mjh trên suy ra dfcm
\(a,n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)
Bài 1: \(\left(5n+2\right)^2-4=\left(25n^2+2.2.5n+2^2\right)-4=25n^2+20n+4-4\)
\(=25n^2+20n=5n\left(5n+4\right)\)
Có \(5n\left(5n+4\right)⋮5\) (có cơ số 5n)
=> \(\left(5n+2\right)^2-4⋮5\)
Bài 2: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Đây là tích ba số tự nhiên liên tiếp nên chia hết cho 3.
Vậy: \(n^3-n⋮3\)
Bài 3: \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2=4,x=3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\\x=3\end{array}\right.\)
Câu 1:
Ta có:(5n+2)2-4=25n2+20n+4-4
=5.5n2+5.4n
=5.(5n2+4n)
Vì 5.(5n2+4n) chia hêt cho 5
Suy ra:(5n+2)2-4
Câu 2:
Ta có:
n3-n=n.n2-n
=n.(n2-1)
=(n-1).n.(n+1)
Vì (n-1);n và (n+1) là ba số tự nhiên liên tiếp
Mà (n-1).n.(n+1) chia hết cho 3(1)
Và (n-1).(n+1) chia hêt cho 2(2)
Từ (1) và (2) suy ra:(n-1).n.(n+1) chia hết cho 6
1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao
Lời giải:
Sửa đề thành: \(2^{5n+3}+5^n.3^{n+2}\) mới đúng bạn nhé.
Ta có:
\(2^{5n+3}+5^n.3^{n+2}=8.2^{5n}+5^n.3^n.9\)
\(=8.32^n+9.15^n\)
Thấy rằng: \(32\equiv 15\pmod {17}\Rightarrow 8.32^n\equiv 8.15^n\pmod {17}\)
\(\Rightarrow 8.32^n+9.15^n\equiv 8.15^n+9.15^n\equiv 17.15^n\equiv 0\pmod {17}\)
Tức là: \(2^{5n+3}+5^n.3^{n+2}=8.32^n+9.15^n\vdots 17\) với mọi số $n$ không âm.
cách khác :
+ nếu \(n=1\) ta có : \(2^{5n+3}+5^n.3^{n+2}=391⋮17\)
+ giả sử \(n=k\) thì \(2^{5k+3}+5^k.3^{k+2}⋮17\)
khi đó nếu \(n=k+1\) \(\Rightarrow2^{5n+3}+5^n.3^{n+2}=2^{5\left(k+1\right)+3}+5^{k+1}.3^{k+1+2}\)
\(=2^{5k+3+5}+5^{k+1}.3^{k+2+1}=2^{5k+3}.2^5+5^k.3^{k+2}.5.3\)
\(=15\left(2^{5k+3}+5^k+3^{k+2}\right)+17.2^{5k+3}⋮17\)
\(\Rightarrow\left(đpcm\right)\)