K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(a^{2014}+\underbrace{1+1+....+1}_{1006}\geq 1007\sqrt[1007]{a^{2014}}=1007a^2\)

\(\Leftrightarrow a^{2014}+1006\geq 1007a^2\)

\(\Rightarrow a^{2014}+2013\geq 1007(a^2+1)\)

\(\Rightarrow \frac{a^{2014}+2013}{b^2+1}\geq \frac{1007(a^2+1)}{b^2+1}\). Hoàn toàn TT với các phân thức còn lại và cộng theo vế:

\(A\geq 1007\left(\frac{a^2+1}{b^2+1}+\frac{b^2+1}{c^2+1}+\frac{c^2+1}{a^2+1}\right)\)

\(\geq 1007.3\sqrt[3]{\frac{(a^2+1)(b^2+1)(c^2+1)}{(b^2+1)(c^2+1)(a^2+1)}}=3021\) (theo AM-GM)

Vậy \(A_{\min}=3021\Leftrightarrow a=b=c=1\)

11 tháng 2 2022

Ai trả lời đi please

11 tháng 8 2016

Từ giả thiết suy ra : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c^2+ac+bc}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{ab\left(c^2+ac+bc\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(c^2+bc+ac\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\) hoặc \(b+c=0\) hoặc \(a+c=0\)

Nếu a + b = 0 thì c = 2014 thay vào M : 

\(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{a^{2013}+b^{2013}}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}=\frac{\left(a+b\right).A}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}\)

\(=\frac{1}{c^{2013}}=\frac{1}{2014^{2013}}\) (A là một nhân tử trong phân tích a2013 + b2013 thành nhân tử)

Tương tự với các trường hợp còn lại.

Vậy \(M=\frac{1}{2014^{2013}}\) 

NV
16 tháng 3 2019

\(a^{2013}+b^{2013}=a^{2012}+b^{2012}\Rightarrow a^{2012}\left(a-1\right)+b^{2012}\left(b-1\right)=0\) (1)

\(a^{2014}+b^{2014}=a^{2013}+b^{2013}\Rightarrow a^{2013}\left(a-1\right)+b^{2013}\left(b-1\right)=0\) (2)

Trừ vế cho vế của (2) cho (1):

\(\left(a-1\right)\left(a^{2013}-a^{2012}\right)+\left(b-1\right)\left(b^{2013}-b^{2012}\right)=0\)

\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a^{2012}\left(a-1\right)^2=0\\b^{2012}\left(b-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\) \(\Rightarrow a=b=1\) (do \(a;b>0\))

\(\Rightarrow P=1+1=2\)

16 tháng 3 2019

Nguyễn Việt Lâm

8 tháng 4 2017

Thầy phynit, cô @Cẩm Vân Nguyễn Thị, các bạn hok giỏi Toán: @Nguyễn Huy Tú, @Nguyễn Trần Thành Đạt, ..................

Giups em vs

8 tháng 4 2017

tớ biết làm bài này

Hình như cậu ko cân mk

26 tháng 3 2022

`Answer:`

undefined

27 tháng 11 2022

a:

\(A=\left|x-2013\right|+\left|2014-x\right|>=\left|x-2013+2014-x\right|=1\)

Dấu = xảy ra khi 2013<=x<=2014

\(B=\left|x-123\right|+\left|456-x\right|>=\left|x-123+456-x\right|=333\)

Dấu = xảy ra khi 123<=x<=456

b: \(\left|x\right|+2004>=2004\)

=>A<=2013/2004

Dấu = xảy ra khi x=0

\(B=\dfrac{\left|x\right|+2002+1}{\left|x\right|+2002}=1+\dfrac{1}{\left|x\right|+2002}< =1+\dfrac{1}{2002}=\dfrac{2003}{2002}\)

Dấu = xảy ra khi x=0