Cho tam giac ABC vg tại A, có BC=10cm, AH=4cm. Gọi I,K là chân đg cao kẻ từ H theo thứ tự xuống các cạnh AB,AC. Tính SAIHK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$AB.AC=AH.BC=40$
$AB^2+AC^2=BC^2=100$
$\Rightarrow (AB+AC)^2=AB^2+AC^2+2AB.AC=180$
$\Rightarrow AB+AC=6\sqrt{5}$
Theo định lý Viet đảo, $AB,AC$ là nghiệm của pt $X^2-6\sqrt{5}X+40=0$
$\Rightarrow AB=4\sqrt{5}; AC=2\sqrt{5}$ (giả sử $AB>AC$)
Dễ thấy $AIHK$ là hình chữ nhật do có 3 góc vuông $\widehat{A}=\widehat{I}=\widehat{K}=90^0$
$\Rightarrow IK=AH=4$
Theo định lý Pitago: $AI^2+AK^2=IK^2=16(1)$
Mặt khác, theo hệ thức lượng trong tam giác vuông:
$AI.AB=AH^2$
$AK.AC=AH^2$
$\Rightarrow AI.AB=AK.AC\Rightarrow \frac{AI}{AK}=\frac{AC}{AB}=\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}(2)$
Từ $(1);(2)\Rightarrow AI=\frac{4\sqrt{5}}{5}; AK=\frac{8\sqrt{5}}{5}$ (cm)
Chu vi AIHK:
$P=2(AI+AK)=2(\frac{4\sqrt{5}}{5}+\frac{8\sqrt{5}}{5})=\frac{24\sqrt{5}}{5}$ (cm)
Diện tích AIHK:
$S=AI.AK=\frac{4\sqrt{5}}{5}.\frac{8\sqrt{5}}{5}=6,4$ (cm vuông)
a) Cm. AH = DE
Ta có: HD vuông góc với BA (gt)
ED vuông góc với BA ( BA vuông góc với AC; E thuộc AC)
=> HD // EA
Ta lại có: DA vuông góc với AC ( BA vuông góc với AC; D thuộc AB)
HE vuông góc với AC (gt)
=> DA // HE
Xét tứ giác DHEA, có;
* HD // EA (cmt)
* DA // HE (cmt)
=> DHEA là hình bình hành (định nghĩa)
=> DE = AH (tính chất của đường chéo) (đpcm)
b) Gọi O là giao điểm của 2 đường chéo DE, AH của hình bình hành DHEA.
Xét tam giác HEC vuông tại E, có:
* K là trung điểm của HC (gt)
=> EK = KH = KC (trung tuyến của tam giác vuông bằng 1/2 cạnh huyền)
=> DI = IH = IB ( chứng minh tương tự)
Xét tam giác DIO và tam giác HIO, có:
* DI = IH (cmt)
* IO là cạnh chung
* OD = OH (DHEA là hình bình hành)
=> tam giác DIO = tam giác HIO (c.c.c)
=> góc IHO = góc IDO ( yếu tố tương ứng)
Mà góc IHO = 90 độ (AH là đường cao)
=> góc IDO = 90 độ
=> ID vuông góc với DE (1)
Xét tam giác HOK và tam giác EOK, có:
* HO = EO (DHEA là hình bình hành)
* OK là cạnh chung
* KH = KE (cmt)
=> tam giác HOK = tam giác EOK (c.c.c)
=> góc OHK = góc OEK ( yếu tố tương ứng)
Mà góc OHK = 90 độ (AH là đường cao)
=> góc OEK = 90 độ
=> KE vuông góc với DE (2)
Từ (1), (2) => ID // KE (từ vuông góc đến song song) (đpcm).