Trong không gian oxyz cho 2 điểm A(2 2 1) , B(-8/3 4/3 8/3) đường thẳng qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng OAB có phương trình là gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là tâm đường tròn ngoại tiếp ta tìm hai đường phân giác trong của tam giác rồi cho giao với nhau. (chú ý ở đây có kĩ thuật viết phương trình đường phân giác trong của tam giác trong không gian).
Đáp án cần chọn là A
Đáp án A.
Ta có O E E ∈ A B Vecto chỉ phương
của đường thẳng (d) là u → = 1 ; − 2 ; 2 .
Kẻ phân giác O E E ∈ A B suy ra
O A O B = A E B E = 3 4 ⇒ A E → = 3 4 E B → ⇒ E 0 ; 12 7 ; 12 7 .
Gọi I là tâm đường tròn nội tiếp
Δ O A B ⇒ I ∈ O E ⇒ O I → = k O E , → với k > 0.
Tam giác OAB vuông tại O, có bán kính
đường tròn nội tiếp r = 1 ⇒ I O = 2 .
Mà
A E = 15 7 ; O A = 3 ; c os O A B ^ = 3 5 → O E = 12 2 7 s u y r a O E ¯ = 12 7 O I ¯ ⇒ I 0 ; 1 ; 1 .
Vậy phương trình đường thẳng cần tìm là
d : x + 1 1 = y − 3 − 2 = z + 1 2
Chọn A
Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC => I (0; 2; 0)
Đường thẳng d cần tìm đi qua I (0; 2; 0) và nhận vectơ làm véc tơ chỉ phương. Phương trình chính tắc của đường thẳng d là