1.Tính :
a ) \(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2018.2019}\)
b ) \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{2017.2019}\)
c) \(S=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+....+\dfrac{1}{2018.2020}\)
d) \(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{2017.2018.2019}\)
2. Tính tổng:
a) \(S=1.2+2.3+3.4+...+2018.2019\)
b) \(S=3.5+5.7+7.9+...+2017.2019\)
c) \(S=2.4+4.6+6.8+...+2018.2020\)
d) \(S=1.2.3+2.3.4+3.4.5+...+2017.2018.2019\)
3.Tính
a ) \(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+.....+\dfrac{1}{2017.2020}\)
b ) \(S=\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+....+\dfrac{1}{2017.2019.2021}\)
Ai có công thức không cho mình xin với ????
Bài 1a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2018.2019}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2018}-\dfrac{1}{2019}\)
\(=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
b) \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)
\(2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2017.2019}\)
\(2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)
\(2S=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
\(S=\dfrac{1009}{2019}\)
Còn lại bạn làm tương tự hết nhé .