Chứng minh rằng:
a, \(\sqrt{x^2-4x+5}\) >= Với mọi x
b, \(\sqrt{x^2+2x+5}+\sqrt{2x^2+4x+3}>=3\) Với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đk: \(0\le x\le4\)
Ta có: \(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)
<=> \(\left(\sqrt{4x+x^2}+\sqrt{4x-x^2}\right)^2=\left(4x+1\right)^2\)
<=> \(\left|4x+x^2\right|+\left|4x-x^2\right|+2\sqrt{\left(4x+x^2\right)\left(4x-x^2\right)}=16x^2+8x+1\)
<=> \(x^2+4x+4x-x^2+2x\sqrt{\left(4-x\right)\left(4+x\right)}=16x^2+8x+1\)
<=> \(2x\sqrt{16-x^2}=16x^2+8x+1-8x\)
<=> \(\left(2x\sqrt{16-x^2}\right)^2=\left(16x^2+1\right)^2\)
<=> \(4x^2\left|16-x^2\right|=256x^4+32x^2+1\)
<=> \(64x^2-4x^4=256x^4+32x^2+1\)
<=> \(260x^4-32x^2+1=0\)
Đặt x2 = k (k > 0) <=> 260k2 - 32k + 1 = 0
Ta có: \(\Delta=32^2-4.260=-16< 0\)
=> pt vô nghiệm
a: Ta có: \(2x^2-4x+5\)
\(=2\left(x^2-2x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-2x+1+\dfrac{3}{2}\right)\)
\(=2\left(x-1\right)^2+3>0\)(1)
Ta có: \(2x^2+4x+2\)
\(=2\left(x^2+2x+1\right)\)
\(=2\left(x+1\right)^2\)>=0(2)
Từ (1)và (2) suy ra hai căn thức này xác định được với mọi x
b: Ta có: \(\sqrt{2x^2-4x+5}>\sqrt{2x^2+4x+2}\)
\(\Leftrightarrow2x^2-4x+5>2x^2+4x+2\)
=>-8x>-3
hay x<3/8
a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)
PT <=> 2x - 1 = 5
<=> x = 3 ( TM )
Vậy ...
b, ĐKXĐ : \(x\ge5\)
PT <=> x - 5 = 9
<=> x = 14 ( TM )
Vậy ...
c, PT <=> \(\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
d, PT<=> \(\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)
Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)
e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)
PT <=> 2x + 5 = 1 - x
<=> 3x = -4
<=> \(x=-\dfrac{4}{3}\left(TM\right)\)
Vậy ...
f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
PT <=> \(x^2-x=3-x\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
a) \(\sqrt{2x-1}=\sqrt{5}\) (x \(\ge\dfrac{1}{2}\))
<=> 2x - 1 = 5
<=> x = 3 (tmđk)
Vậy S = \(\left\{3\right\}\)
b) \(\sqrt{x-5}=3\) (x\(\ge5\))
<=> x - 5 = 9
<=> x = 4 (ko tmđk)
Vậy x \(\in\varnothing\)
c) \(\sqrt{4x^2+4x+1}=6\) (x \(\in R\))
<=> \(\sqrt{\left(2x+1\right)^2}=6\)
<=> |2x + 1| = 6
<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)
Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)
a: \(2x^2-4x+5=2\left(x^2-2x+1+\dfrac{3}{2}\right)=2\left(x-1\right)^2+3>0\forall x\)
\(2x^2+4x+2=2\left(x+1\right)^2>=0\forall x\)
Do đó: Hai căn thức xác định với mọi x
b: \(\Leftrightarrow-4x+5>4x+2\)
=>-8x>-3
=>x<3/8
\(\sqrt{3x^2+6x+12}+\sqrt{5x^2-10x^2+9}=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+4}\)
\(\ge\sqrt{9}+\sqrt{4}=3+2=5\)
@Xin giấu tên
\(x>1\) suy ra \(x>0\) là điều hiển nhiên
Hơn nữa \(x>1\Rightarrow x-1>1-1\leftrightarrow x-1>0\) (liên hệ giữa thứ tự và phép cộng) - Lớp 8
a) có \(\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}=\sqrt{\left(x+1\right)^2+4}\)Vì \(\left(x+1\right)^2\ge0\forall x\in R\rightarrow\left(x+1\right)^2+4\ge0+4=4\forall x\in R\)
\(\Rightarrow\sqrt{x^2+2x+5}\ge\sqrt{0+4}=\sqrt{4}=2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=-1.\)
b) \(x>\sqrt{x}\Leftrightarrow x^2>x\Leftrightarrow x^2-x>0\)
\(\Leftrightarrow x\left(x-1\right)\ge0\)
Vì \(x>1\rightarrow x>0;x-1>0\)
\(\Rightarrow x\left(x-1\right)>0\) với mọi \(x>1\)
hay \(x>\sqrt{x}\) (đpcm)
Chúc bạn học tốt!
I not sure for this answer if have any trouble you can ask me
a)\(\sqrt{x^2-4x+5}\ge\forall x\)
\(\Leftrightarrow\sqrt{x^2-4x+4+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}^2+1\)
mà \(\sqrt{\left(x+1\right)^2}\ge0\forall x\)
nên \(\sqrt{\left(x+1\right)^2}+1>0\forall x\)
sai ngữ pháp Tiếng Anh :))