CMR các biểu thức sau không phụ thuộc vào biến:
\(\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2018\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x - 1 )3 - ( x - 1 )( x2 + x + 1 ) - 3( 1 - x )x < đã sửa đề >
= x3 - 3x2 + 3x - 1 - ( x3 - 1 ) + 3x2 - 3x
= x3 - 1 - x3 + 1
= 0 ( đpcm )
`@` `\text {Ans}`
`\downarrow`
`A = (x - 5)( 2x + 3) - 2x(x - 3) + x + 7`
`= x(2x + 3) - 5(2x + 3) - 2x^2 + 6x + x + 7`
`= 2x^2 + 3x - 10x - 15 - 2x^2 + 7x + 7`
`= (2x^2 - 2x^2) + (3x - 10x + 7x) + (-15 + 7)`
`= 0 + 0 - 8`
`=-8`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
`@` `\text {Kaizuu lv uuu}`
\(A=x^2-16-6x-2x^2+x^2+6x+9=-7\\ B=\left(x^2+4\right)\left(x^2-4\right)-x^4+9\\ B=x^4-16-x^4+9=-7\)
a) \(A=\left(x+4\right)\left(x-4\right)-2x\left(3+x\right)+\left(x+3\right)^2\)
\(=x^2-16-2x^2-6x+x^2+6x+9=-7\)
b) \(B=\left(x^2+4\right)\left(x+2\right)\left(x-2\right)-\left(x^2+3\right)\left(x^2-3\right)\)
\(=\left(x^2+4\right)\left(x^2-4\right)-\left(x^4-9\right)\)
\(=x^4-16-x^4+9=-7\)
\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=x.5x-x.3-x^2.x+x^2.1+x.x^2-x.6x-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2+10+3x\)
\(=-10\)
Biểu thức trên kết quả là -10 => ĐPCM
\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
=\(5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
=\(\left(x^3-x^3\right)+\left(5x^2+x^2-6x^2\right)+\left(-3x+3x\right)-10\)
=-10
=> ĐPCM
Giải:
\(\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2018\)
\(=x^{2n}+x^n-2x^n-2-\left(x^{n-3}.x^{n+3}\right)+x^{n-3}.x^3+2018\)
\(=x^{2n}-x^n-2-x^{n-3+n+3}+x^{n-3+3}+2018\)
\(=x^{2n}-x^n-2-x^{2n}+x^n+2018\)
\(=-2+2018\)
\(=2016\)
Vậy ...