K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2015

Nếu n=0,suy ra A=0(thỏa mãn)

Nếu n=1 suy rs A=0(thỏa mãn)

Nếu n>1,ta có

A=n.(n^3-2.n^2+3n-2)

A=n.[n.(n^2-2n+3)-2]

A=n.[n.(n-1)^2+2.(n-1)]

A=n.(n-1).[n.(n-1)+2]

Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2     (tự chứng minh)

Suy ra A không phải là số chính phương với n>1

                                Vậy n={0;1}

nhớ chọn câu trả lời của mình nhe

4 tháng 11 2019

Điều kiện xác định của phân thức: n ≠ 2

Ta có:

Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

Vậy để N nguyên thì Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nguyên ⇒ n – 2 là ước của 5;  Ư ( 5 ) = - 1 ; 1 ; - 5 ; 5

n - 2= -1 ⇒ n =1;

n – 2 = 1 ⇒ n =3;

n – 2 = -5 ⇒ n = - 3;

n – 2 = 5 ⇒ n = 7;

vì n ∈ N nên n = 1; n = 3; n = 7

Vậy với n ∈ { 1; 3; 7} thì Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 có giá trị là số nguyên

14 tháng 1 2018

Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath

8 tháng 2 2018

Nếu n=0,suy ra A=0(thỏa mãn)

Nếu n=1 suy rs A=0(thỏa mãn)

Nếu n>1,ta có

A=n.(n^3-2.n^2+3n-2)

A=n.[n.(n^2-2n+3)-2]

A=n.[n.(n-1)^2+2.(n-1)]

A=n.(n-1).[n.(n-1)+2]

Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2     (tự chứng minh)

Suy ra A không phải là số chính phương với n>1

                                Vậy n={0;1}

16 tháng 3 2023

Lỡ có sai sót thì thông cảm giúp mình nha:3

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:
Đặt $n+31=a^2$ với $a$ tự nhiên. Khi đó: $2n+5=2(a^2-31)+5=2a^2-57$
Như vậy, ta cần tìm $a$ sao cho $2a^2-57$ là số chính phương.

Ta có 1 tính chất quen thuộc: Số chính phương lẻ chia 8 dư $1$ (bạn có thể xét 1 scp $x^2$ và xét các TH $x=4k+...$ để cm)

$\Rightarrow 2a^2-57\equiv 1\pmod 8$

$\Rightarrow 2a^2\equiv 58\pmod 8$

$\Rightarrow a^2\equiv 29\equiv 5\pmod 8$

(điều này vô lý do scp chia 8 dư 0,1 hoặc 4)

Vậy không tồn tại số tự nhiên $a$, tức là không tồn tại số $n$ cần tìm.

15 tháng 1 2021

undefined

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

30 tháng 7 2016

\(a=n^2\left(n^4-n^2+2n+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)

A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)

nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)

vì n>1 => 2n>2

=>2n-2>0

=>\(n^2-\left(2n-2\right)< n^2\)

hay \(n^2-2n+2< n^2\)(2)

từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)

=>\(n^2-2n+2\)không là số chính phương

=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương

mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho