K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Mình viết luôn là sin với cos, bạn tự cho thêm \(\alpha\) nhé.

VT= \(\sin^2.\dfrac{\sin}{\cos}+\cos^2.\dfrac{\cos}{\sin}+2\sin\cos\)

= \(\dfrac{\sin^3}{\cos}+\dfrac{\cos^3}{\sin}+2\sin\cos\)

= \(\dfrac{\sin^4+\cos^4+2\sin^2.\cos^2}{\cos.\sin}\)

= \(\dfrac{\left(\sin^2+\cos^2\right)^2}{\cos.\sin}\)

= \(\dfrac{1}{\sin.\cos}\)(1)

VP = \(\dfrac{\sin}{\cos}+\dfrac{\cos}{\sin}\)

= \(\dfrac{\sin^2+\cos^2}{\cos.\sin}\)

= \(\dfrac{1}{\cos.\sin}\)(2)

từ (1) và (2) => VT=VP (đpcm)

Chúc bạn học tốt!

26 tháng 4 2018

cảm ơn bạn

Đặt \(\tan\alpha=a;\cot\alpha=b\)

Theo đề, ta có: \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=a^2+2ab+b^2-a^2+2ab-b^2\)

\(=4ab=4\cdot\tan\alpha\cdot\cot\alpha=4\)

5 tháng 11 2019

Trên đường tròn lượng giác,từ A(1,0) vẽ tiếp tuyến t’At với đường tròn lượng giác.

Từ B(0,1) vẽ tiếp tuyến s’Bs với đường tròn lượng giác .

Cho cung lượng giác AM có số đo α (α ≠ π/2 + kπ ). Gọi T là giao điểm của OM với trục t’At.

Gọi S là giao điểm của OM và trục s’Bs.

Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm T trên trục tan. Do đó

tan(α + kπ) = tanα.

Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm S trên trục cot. Do đó

cot(α + kπ) = cotα.

28 tháng 9 2018

a, Tìm được sinα = 24 5 , tanα = 24 , cotα =  1 24

b, cosα = 5 3 , tanα = 2 5 , cotα =  5 2

c, sinα = ± 2 5 , cosα = ± 1 5 , cotα =  1 2

d, sinα = ± 1 10 , cosα = ± 3 10 , tanα = 1 3

29 tháng 10 2021

j vậy trời, mik báo cáo đấy;-;

29 tháng 10 2021

bạn có trả lời nhầm bài khum thế, nếu bạn bt làm thì giúp mik iii, plss

2 tháng 10 2016

\(\Delta s=r\Delta\alpha\) 

=> \(\frac{\Delta s}{\Delta t}=r\frac{\Delta\alpha}{\Delta t}\)

mà \(\omega=\frac{\Delta\alpha}{\Delta t}\)

=> \(v=r\omega\)

2 tháng 10 2016

a(ht)=(v^2)/r

       = ((rω)^2)/r

       = (r^2xω^2)/r

a(ht) = rω^2

17 tháng 9 2018

Đặt \(\hept{\begin{cases}\sqrt{1+\frac{\sqrt{3}}{2}}=a\\\sqrt{1-\frac{\sqrt{3}}{2}}=b\end{cases}}\)

\(\Rightarrow a^2+b^2=2;ab=\frac{1}{2};a-b=1\)

\(\Rightarrow\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{a^2}{1+a}+\frac{b^2}{1-b}\)

\(=\frac{a^2+b^2-ab\left(a-b\right)}{1-ab+\left(a-b\right)}=\frac{2-\frac{1}{2}.1}{1-\frac{1}{2}+1}=1\)

1 tháng 4 2020

mình nghĩ đề nó như thế này

\(\sqrt{a^2+b^2}-\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2-\left(b+d^{ }\right)^2}\)

hai zế BĐT ko âm nên bình phương 2 zế ta có

\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+2ac+c^2+b^2+2bd+d^2\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\left(1\right)\)

Nếu \(ac+bd< 0\)thì BĐT đc c/m

Nêu \(ac+bd\ge0\left(1\right)\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2acbd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2acbd\)

\(\Leftrightarrow a^2d^2+b^2c^2-2acbd\ge0\Leftrightarrow\left(ad-bc\right)^2\ge0\)( luôn đúng )

dấu = xảy ra khi \(ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

12 tháng 4 2017

  

Đề thi Học kì 2 Toán 10 có đáp án (Đề 3)