Phân tích đa thức thành nhân tử
\(-3x^2+10x-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^3-3x^2+6x^2-18x+8x-24\\ =\left(x-3\right)\left(x^2+6x+8\right)\\ =\left(x-3\right)\left(x^2+2x+4x+8\right)\\ =\left(x-3\right)\left(x+2\right)\left(x+4\right)\)
\(x^3+3x^2-10x-24=\left(x^3-3x^2\right)+\left(6x^2-18x\right)+\left(8x-24\right)=x^2\left(x-3\right)+6x\left(x-3\right)+8\left(x-3\right)=\left(x-3\right)\left(x^2+6x+8\right)=\left(x-3\right)\left[\left(x^2+2x\right)+\left(4x+8\right)\right]=\left(x-3\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=\left(x-3\right)\left(x+2\right)\left(x+4\right)\)
\(3x^2+10x+3\)
\(=3x^2+x+9x+3\)
\(=x\left(3x+1\right)+3\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x+3\right)\)
\(3x^2+10x+3=3x^2+9x+x+3=3x\left(x+3\right)+\left(x+3\right)\)
\(=\left(3x+1\right)\left(x+3\right)\)
chúc bn học tốt
Đặt x2+10x+5=a.Ta có biểu thức là : a(a+8)+16=a2+8a+16=(a+4)2=(x2+10x+9)2
1, \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)\)
\(=5\left[\left(x+1\right)^2-y^2\right]=5\left(x+1-y\right)\left(x+1+y\right)\)
2, \(3x^3+6x^2+3x-12xy^2=3x\left(x^2+2x+1-4y^2\right)\)
\(=3x\left[\left(x+1\right)^2-4y^2\right]=3x\left(x+1-2y\right)\left(x+1+2y\right)\)
a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)
\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)
\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)
\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)
\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)
b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)
\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)
\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)
\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)
a) \(x^2-3x=x\left(x-3\right)\)
b) \(10x\left(x-y\right)-8y\left(x-y\right)=2\left(x-y\right)\left(5x-4y\right)\)
c) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
\(=-3\left(x^2-\dfrac{10}{3}x+\dfrac{5}{3}\right)\\ =-3\left(x^2-2\cdot\dfrac{5}{3}x+\dfrac{25}{9}-\dfrac{10}{9}\right)\\ =\dfrac{10}{3}-3\left(x-\dfrac{5}{3}\right)^2\\ =\left[\sqrt{\dfrac{10}{3}}-\sqrt{3}\left(x-\dfrac{5}{3}\right)\right]\left[\sqrt{\dfrac{10}{3}}+\sqrt{3}\left(x-\dfrac{5}{3}\right)\right]\\ =\left(\dfrac{\sqrt{30}}{3}+\dfrac{5\sqrt{3}}{3}-x\sqrt{3}\right)\left(\dfrac{\sqrt{30}}{3}-\dfrac{5\sqrt{3}}{3}+x\sqrt{3}\right)\)
\(=\left(\dfrac{\sqrt{30}+5\sqrt{3}}{3}-x\sqrt{3}\right)\left(\dfrac{\sqrt{30}+5\sqrt{3}}{3}-x\sqrt{3}\right)\)
\(-3x^2+10x-5\)
\(=-3\left(x^2-\dfrac{10}{3}x+\dfrac{5}{3}\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{10}{9}\right)\)
\(=-3\left(x-\dfrac{5+\sqrt{10}}{3}\right)\left(x-\dfrac{5-\sqrt{10}}{3}\right)\)