K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018


a)Chứng minh AM2=AN2=AB.ACAM2=AN2=AB.AC
b)Đường thẳng ME cắt đường tròn (O) tại I. Chứng minh IN // AB
c)Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi đường tròn (O) thay đổi

30 tháng 5 2021

Tạm câu c) làm sau :<

1 tháng 4 2020

GIẢI PHÁP CỦA CÂU NÀY LÀ GHÕ CHO MẠNG

2 tháng 8 2017

Gọi I là giao điểm của MN và AC.

Ta có: \(\widehat{IHO}=\widehat{OEI}=90°\)

\(\Rightarrow\)Tứ giác EIHO nội tiếp đường tròn.

\(\Rightarrow\)Tâm của đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.(*)

Ta có ∆AIH \(\approx\)∆AOE 

\(\Rightarrow\)AH.AO = AE.AI (1)

Ta có: ∆AMB \(\approx\)AOM

\(\Rightarrow\)AM2 = AH.AO (2)

Ta lại có: ∆ABM \(\approx\)∆AMC

\(\Rightarrow\)AM2 = AB.AC (3)

Từ (1), (2), (3) \(\Rightarrow\)AE.AI = AB.AC

Vì A,B,C,E cố định nên I cố định (**)

Từ (*), (**) suy ta tâm đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.

PS: không chứng minh được nó nằm trên đường tròn nha b. Hình tự vẽ.

3 tháng 8 2017

bạn cho mình hỏi tại sao tam giác ABM đồng dạng với tam giác AMC vậy?. Mình ko hiểu chỗ đó

17 tháng 8 2017

a )AM và AN đều là tiếp tuyến của (O) 
còn ABC là cát tuyến 
=> AM^2 = AN^2 = AB.AC 
b) 
Dễ thấy OA vuông góc với MN tại trung điểm MN 
=> OA vuông góc với MN tại F 
Ta có OMA = ONA = OEA = 90 
=> M,N,E đều thuộc đường tròn đường kính OA 
=> EMAB nội tiếp 
=> góc EMN = góc EAN (1) 
Gọi Nt là tia đối của tia AN 
Ta có góc INt = 1/2 số đo IN = góc EMN (vì Nt là tiếp tuyến) (2) 
Từ (1) và (2) 
=> góc EAN = góc INt 
=> IN//AE hay IN//AB 
c) 
đường tròn ngoại tiếp tam giác OEF đi qua điểm E là điểm cố định vì E là trung điểm BC 
( câu này hơi ngộ )

Bài này cô giáo mình đã chữa ~^^ tối mát