Chứng tỏ rằng:
\(D=\dfrac{1}{^22}+\dfrac{1}{^23}+\dfrac{1}{^24}+...+\dfrac{1}{^210}< 1\)
Giúp mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cả dãy đang trừ mà sao cái cuối là cộng vậy bạn, dãy ko có quy tắc à :v
\(A=\dfrac{1}{\sqrt{25}+\sqrt{24}}+\dfrac{1}{\sqrt{24}+\sqrt{23}}+....+\dfrac{1}{\sqrt{2}+1}\)
\(A=\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+......+\sqrt{2}-1=\sqrt{25}-1=4\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3B-B=1-\dfrac{1}{3^{100}}\)
\(\Rightarrow2B=1-\dfrac{1}{3^{100}}\)
\(0< \dfrac{1}{3^{100}}< 1\Rightarrow0< 1-\dfrac{1}{3^{100}}< 1\)
\(\Rightarrow0< 2B< 1\Rightarrow0< B< \dfrac{1}{2}\Rightarrow\) B không phải số nguyên
bài 2
a;đặt biểu thức là S | |
S < 1/1.2 + 1/2.3 + .......1/(n-1)n | |
= 1- 1/2 +1 /2 -1/3+........ + 1/n-1 - 1/n | |
= 1 -1/n <1 |
|
vậy S < 1 | |
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}=1-\dfrac{1}{10}< 1\left(đpcm\right)\)