K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

Bước 1:Nhập n.Gán i=1,A:=0;

Bước 2:A=1

i(i+2)

Bước 3:i:=i+1

Bước 4:In ra A

Bước 5:Kết thúc vòng lặp.

2 tháng 1 2020

Bài Làm:

Bước 1:Nhập n.Gán i=1,A:=0;

Bước 2:A=1 và i(i+2)

Bước 3:i:=i+1

Bước 4:In ra A

Bước 5:Kết thúc vòng lặp.

17 tháng 4 2022

Bước 1: Nhập N

Bước 2: A←0; i←1;

Bước 3: Nếu i<N thì in ra kết quả và kết thúc

Bước 4: A←A+1/(i*(i+2));

Bước 5: i←i+1;

5 tháng 2 2017

Bước 1: nhập n, \(A\leftarrow0\), \(i\leftarrow1\);

Bước 2: \(A\leftarrow A+\frac{1}{i\left(i+2\right)}\)

Bước 3: \(i\leftarrow i+1\)

Bước 4: Nếu i<=n thì quay về bước 2.

Bước 5: Ghi kết quả A ra màn hình và kết thúc

Thuật toán: 

Bước 1: Nhập n

Bước 2: i←1; a←0;

Bước 3: a←a+1/(i*(i+2));

Bước 4: i←i+1;

Bước 5: Nếu i<=n thì quay lại bước 3

Bước 6: xuất a

Bước 7: Kết thúc

Viết chương trình:

uses crt;

var a:real;

i,n:longint;

begin

clrscr;

write('Nhap n='); readln(n);

a:=0;

for i:=1 to n do

a:=a+1/(i*(i+2));

writeln(a:4:2);

readln;

end.

25 tháng 1 2021

Em cảm ơn anh !

hơi khó đó tick mình nha Hoàng Thu Hà

8 tháng 9 2016

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

  \(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)

  \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(=\frac{4}{9}-\frac{1}{5}\)

\(=\frac{11}{45}\)

 

8 tháng 9 2016

Cảm ơn giúp  bài nữa nha !!

7 tháng 9 2016

\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)

7 tháng 9 2016

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(S=\frac{4}{9}-\frac{1}{5}\)

\(S=\frac{11}{45}\)