chứng minh
M=\(\dfrac{3}{1^2\times2^2}+\dfrac{5}{2^2\times3^2}+\dfrac{7}{3^2\times4^2}+.......+\dfrac{19}{9^2\times10^2}< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{5}{1.2}+\dfrac{13}{2.3}+\dfrac{25}{3.4}+\dfrac{41}{4.5}+...+\dfrac{181}{9.10}\)
\(=\left(\dfrac{1}{1.2}+\dfrac{4}{1.2}\right)+\left(\dfrac{1}{2.3}+\dfrac{12}{2.3}\right)+\left(\dfrac{1}{3.4}+\dfrac{24}{3.4}\right)+...+\left(\dfrac{1}{9.10}+\dfrac{180}{9.10}\right)\)
\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\right)+\left(\dfrac{4}{1.2}+\dfrac{12}{2.3}+...+\dfrac{180}{9.10}\right)\)
\(=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)+\left(2+2+...+2\right)\)
\(=1-\dfrac{1}{10}+\left(2.9\right)\)
\(=1-\dfrac{1}{10}+18\)
\(=\dfrac{9}{10}+18\)
\(=18\dfrac{9}{10}\)
B =\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{2}{3}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{7}{9}-\dfrac{1}{10}=\dfrac{61}{90}\)
\(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)
\(=2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(=2.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2.\left(1-\dfrac{1}{100}\right)=2.\dfrac{99}{100}=\dfrac{99}{50}\)
\(E=\dfrac{11.3^{29}-3^{2^{15}}}{2.3^{14}.2.3^{14}}\)
\(=\dfrac{11.3-3^{30}}{2^2}=\dfrac{33-3^{30}}{4}\)
D=1/1-1/2+1/2-1/3+1/3-1/4+.....+1/2022-1/2023
=1-1/2023=2022/2023
\(M=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(M=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)
\(M=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(M=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)