K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

Dat x2+2x+2=a (a>0)

pt<=> \(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)

=> \(\dfrac{\left(a-1\right)\left(a+1\right)}{a\left(a+1\right)}+\dfrac{a.a}{a\left(a+1\right)}=\dfrac{7}{6}\)

=> \(\dfrac{a^2-1}{a\left(a+1\right)}+\dfrac{a^2}{a\left(a+1\right)}=\dfrac{7}{6}\)

=> (2a2-1).6=7a(a+1)

=> 12a2-6=7a2+7a

=> 5a2-7a-6=0

8 tháng 2 2018

\(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)

Đặt x2 + 2x + 1 = t, ta có:

\(\dfrac{t}{t+1}+\dfrac{t+1}{t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)\(\dfrac{t\left(t+2\right)}{\left(t+1\right)\left(t+2\right)}+\dfrac{\left(t+1\right)^2}{\left(t+2\right)\left(t+1\right)}=\dfrac{7}{6}\)

\(\Leftrightarrow\) \(\dfrac{t^2+2t}{t^2+3t+2}+\dfrac{t^2+2t+1}{t^2+3t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)\(\dfrac{t^2+2t+t^2+2t+1}{t^2+3t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)\(\dfrac{2t^2+4t+1}{t^2+3t+2}=\dfrac{7}{6}\)

\(\Leftrightarrow\)6(2t2+4t+1) = 7(t2 + 3t + 2)

\(\Leftrightarrow\) 12t2 + 24t + 6 = 7t2 + 21t + 14

\(\Leftrightarrow\) 12t2 + 24t + 6 - 7t2 - 21t - 14 = 0

\(\Leftrightarrow\) 5t2 + 3t - 8 = 0

\(\Leftrightarrow\) 5t2 - 5t + 8t - 8 = 0

\(\Leftrightarrow\) 5t(t - 1) + 8(t - 1) = 0

\(\Leftrightarrow\) (5t + 8)(t - 1) = 0

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5t+8=0\\t-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=-\dfrac{8}{5}\\t=1\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2+2x+1=-\dfrac{8}{5}\left(vôlívì:x^2+2x+1=\left(x+1\right)^2\ge0>-\dfrac{8}{5}\right)\\x^2+2x+1=1\end{matrix}\right.\)\(\Leftrightarrow\)x2 + 2x + 1 = 1

\(\Leftrightarrow\) x2 + 2x = 0

\(\Leftrightarrow\)x(x + 2) = 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy phương trình có n0 là S={-2;0}

NV
28 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)

\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)

Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)

\(6\left(a^2-2\right)+7a-36=0\)

\(\Leftrightarrow6a^2+7a-48=0\)

Nghiệm xấu

Tôi nghĩ là như này :)) Sai thì chịu nhá :((

Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)

Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)

Nên VP pt (1) cũng phải lớn hơn bằng 0

Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)

Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)

Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)

\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )

Vậy \(x=-2\) thỏa mãn pt.

6 tháng 2 2020
\(\left|x+1\right|\) - + + + +
3\(\left|x-1\right|\) - - + + +
\(\left|x\right|\) - - - + +
\(2\left|x-2\right|\) - - - - +
PT 2x-4=5x-2 2x-4=5x-2 -4x+2=2x-2 -4x+2=-2x+6

-1 0 1 2

1) x=-2/3>-1( loại)

2)

9 tháng 2 2018

\(x^3-6x^2+11x-6=0\\ \Leftrightarrow\left(x^3-x^2\right)-\left(5x^2-5x\right)+\left(6x-6\right)=0\\ \Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

9 tháng 2 2018
https://i.imgur.com/HQef4rf.jpg
8 tháng 2 2018

Giải bài toán bằng cách lập phương trình (Tiếp).

31 tháng 5 2017

đầu tiên đưa pt về dạng ax2+bx+c=0

tiếp theo tính \(\Delta\) hoặc \(\Delta'\)

nếu \(\Delta\) hoặc \(\Delta'\)<0 pt vô nghiệm

nếu \(\Delta\) hoặc \(\Delta'\)\(\ge0\) thì ta tính nghiệm theo công thức nghiệm

31 tháng 5 2017

mỗi nơi 1 kiểu

3 tháng 6 2017

các số  lẻ có 3 chữ số là 101 - 999

số lẻ chia 5 dư 2 là 107, 117, 127,......997 ( có chữ số tận cùng là 7)

các số tự nhiên lẻ có 3 chữ số mà mỗi số chia cho 5 dư 2 là

(997 - 107) :10 + 1 = 90 số

9 tháng 7 2017

bình phương là x2 nhe cu lay 02=0 cu the nhan len den 20 ban nhe 

5 tháng 8 2020

Tìm x

\(x^2=36\)

\(x^2=6^2=\left(-6\right)^2\)

\(\Rightarrow x=\pm6\)

Vậy \(x=\pm6\).

\(3x^3=81\)

\(x^3=81\div3\)

\(x^3=27\)

\(x^3=3^3\)

\(\Rightarrow x=3\)

Vậy \(x=3\).

\(\left(4x\right)^2=64\)

\(\left(4x\right)^2=8^2=\left(-8\right)^2\)

\(\Rightarrow\orbr{\begin{cases}4x=8\\4x=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

Vậy \(x=\pm2\).

\(\left(x-2\right)^2=121\)

\(\left(x-2\right)^2=11^2=\left(-11\right)^2\)

\(\Rightarrow\orbr{\begin{cases}x-2=11\\x-2=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=13\\x=-9\end{cases}}\)

Vậy \(x\in\left\{13;-9\right\}\).

5 tháng 8 2020

\(a,x^2=36\)

\(\Rightarrow x^2=6^2\)

\(\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)

\(b,3x^3=81\)

\(\Rightarrow x^3=81:3\)

\(\Rightarrow x^3=27\)

\(\Rightarrow x^3=3^3\)

\(\Rightarrow x=3\)

\(c,\left(4x\right)^2=64\)

\(\Rightarrow\left(4x\right)^2=8^2\)

\(\Rightarrow\orbr{\begin{cases}4x=8\\4x=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

\(d,\left(x-2\right)^2=121\)

\(\Rightarrow\left(x-2\right)^2=11^2\)

\(\Rightarrow\orbr{\begin{cases}x-2=11\\x-2=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=13\\x=-9\end{cases}}\)

Học tốt