cmr \(\dfrac{1}{4a^2+b^2+c^2}+\dfrac{1}{a^2+4b^2+c^2}+\dfrac{1}{a^2+b^2+4c^2}< =\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)
Ta sẽ chứng minh nó là GTLN
Thật vậy ta cần chứng minh
\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)
\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)
\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự rồi cộng theo vế ta có:
\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)
Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng
Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 3:
Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là
\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:
\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)
Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)
Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)
\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)
\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM
Đẳng thức xảy ra khi \(a=b=c=1\)
T/b:Vâng, rất giỏi
dạng này chắc chắc là phải dùng AM-GM ngược dấu rồi :)
Ta có:
\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(b+1\right)}{4a^2+1}\ge1+b-\dfrac{4a^2\left(b+1\right)}{4a}=1+b-a\left(b+1\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(c+1\right);\dfrac{1+a}{1+4c^2}\ge1+a-c\left(a+1\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+c^2}\)
\(\ge3+\left(a+b+c\right)-\left(ab+bc+ca\right)-\left(a+b+c\right)\)
\(=3-\dfrac{1}{3}\left(a+b+c\right)^2=3-\dfrac{1}{3}\cdot\dfrac{9}{4}=\dfrac{9}{4}=VP\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{2}\)
\(VT=\left(\dfrac{a}{1+4c^2}+\dfrac{b}{1+4a^2}+\dfrac{c}{1+4b^2}\right)+\left(\dfrac{1}{1+4c^2}+\dfrac{1}{1+4a^2}+\dfrac{1}{1+4b^2}\right)\)
\(VT=\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)+3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)
Xét \(\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2a}{1+4c^2}\le\dfrac{4c^2a}{4c}=ca\\\dfrac{4a^2b}{1+4a^2}\le\dfrac{4a^2b}{4a}=ab\\\dfrac{4b^2c}{1+4b^2}\le\dfrac{4b^2c}{4b}=bc\end{matrix}\right.\)
\(\Rightarrow\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\ge\dfrac{3}{2}-\left(ab+bc+ca\right)\) (1)
Xét \(3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2}{1+4c^2}\le\dfrac{4c^2}{4c}=c\\\dfrac{4a^2}{1+4a^2}\le\dfrac{4a^2}{4a}=a\\\dfrac{4b^2}{1+4b^2}\le\dfrac{4b^2}{4b}=b\end{matrix}\right.\)
\(\Rightarrow3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\ge\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\dfrac{3}{2}-\left(ab+bc+ca\right)+\dfrac{3}{2}\)
\(\Rightarrow VT\ge3-\left(ab+bc+ca\right)\) (3)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{3}{4}\ge ab+bc+ca\)
\(\Rightarrow3-\dfrac{3}{4}\le3-\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{9}{4}\le3-\left(ab+bc+ca\right)\) (4)
Từ (3) và (4)
\(\Rightarrow VT\ge\dfrac{9}{4}\)
\(\Leftrightarrow\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4c^2}\ge\dfrac{9}{4}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Lời giải:
Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho:\((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)
Bài toán trở thành:
Cho $x,y,z>0$. CMR: \(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{3}{2}\)
Thật vậy, áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}=\frac{x^6}{x^2yz(x^2+y^2)}+\frac{y^6}{y^2xz(y^2+z^2)}+\frac{z^6}{z^2xy(z^2+x^2)}\)
\(\geq \frac{(x^3+y^3+z^3)^2}{x^2yz(x^2+y^2)+y^2xz(y^2+z^2)+z^2xy(z^2+x^2)}=\frac{(x^3+y^3+z^3)^2}{xyz(x^3+y^3+z^3+xy^2+yz^2+zx^2)}(*)\)
Áp dụng BĐT AM-GM:
\(x^3+y^3+z^3\geq 3xyz\Rightarrow \frac{x^3+y^3+z^3}{3}\geq xyz(1)\)
Và:
\(x^3+y^3+y^3\geq 3xy^2; y^3+z^3+z^3\geq 3yz^2; z^3+x^3+x^3\geq 3zx^2\)
Cộng theo vế và rút gọn \(\Rightarrow x^3+y^3+z^3\geq xy^2+yz^2+zx^2\)
\(\Rightarrow 2(x^3+y^3+z^3)\geq x^3+y^3+z^3+xy^2+yz^2+zx^2(2)\)
Từ \((1);(2)\Rightarrow \frac{2}{3}(x^3+y^3+z^3)^2\geq xyz(x^3+y^3+z^3+xy^3+yz^2+zx^2)(**)\)
Từ \((*);(**)\Rightarrow \frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{(x^3+y^3+z^3)^2}{\frac{2}{3}(x^3+y^3+z^3)^2}=\frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
Chắc là bạn ghi nhầm mẫu số cuối cùng
\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(1+b\right)}{1+4a^2}\ge1+b-\dfrac{4a^2\left(1+b\right)}{4a}=1+b-a\left(1+b\right)\)
Tương tự: \(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(1+c\right)\) ; \(\dfrac{1+a}{1+4c^2}\ge1+a-c\left(1+a\right)\)
Cộng vế với vế:
\(P\ge3+a+b+c-\left(a+b+c\right)-\left(ab+bc+ca\right)\)
\(P\ge3-\left(ab+bc+ca\right)\ge3-\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)