Tô số tự nhiên a nhỏ nhất có ba chữ số sao cho chia cho 11 thì dư 5, chia cho 13 thì dư 8.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên nhỏ nhất có ba chữ số sao cho khi chia a cho 11 thì dư 5, khi chia a cho 13 thì dư 8
Ta có a chia cho 11 dư 5 => a = 11x + 5 => a + 6 = 11x + 5 + 6 = 11x + 11 chia hết cho 11
Do 77 chia hết cho 11 => a + 6 + 77 cũng chia hết cho 11 => a + 83 chia hết cho 11 (1)
Lại có a chia 13 dư 8 => a = 13y + 8 => a + 5 = 13y + 8 + 5 = 13y + 13 chia hết cho 13
Do 78 chia hết cho 13 => a + 5 + 78 chia hết cho 13 => a + 83 chia hết cho 13 (2)
Từ 1 và 2 => a + 83 chia hết cho BCNN(11;13) => a + 83 chia hết cho 143
=> a = 143k - 83
Để a nhỏ nhất và a có 3 chữ số => k = 2 => a = 203
a chia 11 dư 5⇔a=11m+5=>a+6=(11m+5)+6=11m|+11=11.(m+1) chia hết cho 11( m thuộc N)
Vì 77 chia hết cho 11 nên (a+6)+77 cũng chia hết cho 11⇔a+83 chia hết cho 11. (1)
a chia 13 dư 8⇔a=13n+8=>a+5=(13n+8)+5=13n+13=13.(n+1) chia hết cho 11 ( n thuộc N)
Vì 78 chia hết cho 13 nên (a+5)+78 cũng chia hết cho 13⇔a+83 chia hết cho 13. (2)
Từ (1) và (2)=>a+83chia hết cho BCNN(11;13)⇔a+83 chhia hết cho 143
=>a=143k-83( k thuộc N*)
Để a nhỏ nhất có 3 chữ số ta chọn k=2. Khi đó a=203
chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143 ⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
a chia 11 dư 5 \(\Leftrightarrow\) a = 11m + 5 \(\Rightarrow\) a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m \(\in\) N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 \(\Leftrightarrow\) a + 83 chia hết cho 11. (1)
a chia 13 dư 8 \(\Leftrightarrow\) a = 13n + 8 \(\Rightarrow\) a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n \(\in\) N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 \(\Leftrightarrow\) a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) \(\Leftrightarrow\) a + 83 chia hết cho 143
\(\Rightarrow\) a = 143k - 83 (k \(\in\) N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
Số cần tìm là 203 vì 203 / 13 = 15 (dư 8); 203 / 11 = 18 (dư 5).
Ta có
a: 11 dư 5 => a-5 chia hết cho 11 => a-5+11 chia hết cho 11 => a+6 chia hết cho 11
á:13 dư 8 => a-8 chia hết cho 13 => a-8+13 chia hết cho 13 => a+6 chia hết cho 13
=> a+6 \(\in\)ƯC(11;13)
=> a+6 \(\in\) Ư(143)
=> a+6 = 1;11;13;143
=> a= 5;7;137 (vì a là số tự nhiên )
Vì a là số nhỏ nhất có 3 chữ số
=> a= 137
Vậy số cần tìm là 137