K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

\(x+2x+3x+...+2011x=2012.1013\)

\(\dfrac{2011\left(2011+1\right)}{2}x=2012.2013\)

\(x=2012.2013.\dfrac{2}{2011.2012}\)

\(x=\dfrac{4026}{2011}\)

3 tháng 4 2018

b thì chịu

28 tháng 3 2021

`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`

`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`

`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`

`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)

`<=>x=2014`

Vậy `S={2014}`.

=>x-2014=0

hay x=2014

23 tháng 1 2022

giải rõ ra được không? 

17 tháng 3 2023

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

\(\Leftrightarrow\left(x-2014\right).A=0\)

\(\text{Vì A }\ne0\)

\(\Rightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)

 

6 tháng 3 2017

Bài của bạn nè bạn gái!

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{1012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

\(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{10}{2008}\ne0\)

\(\Rightarrow x-2014=0\Rightarrow x=2014\)

vậy x=2014

6 tháng 3 2017

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}+1+\dfrac{x-2}{2012}+1+\dfrac{x-3}{2011}+1-\dfrac{x-4}{2010}+1-\dfrac{x-5}{2009}+1-\dfrac{x-6}{2008}+1=0\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

Vậy PT có nghiệm là \(x=2014\)

27 tháng 4 2016

a) x+2x+3x+4x+...+2011x = 2012.2013

\(\Rightarrow\) x(1+2+3+4+...+2011) = 4050156

\(\Rightarrow\) x.2023066 = 4050156

\(\Rightarrow\) x = 4026/2011

1 tháng 5 2016

Câu a ko nhất thiết phải tính ra số lớn như thế đâu

21 tháng 3 2023

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

`=> (x+2014) (1/2010 + 1/2011-1/2012-1/2013)=0`

`=> x+2014=0` ( vì `1/2010 + 1/2011-1/2012-1/2013≠0 )`

`=>x=-2014`

 

8 tháng 3 2018

a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

\(\Rightarrow\)\(2^x+2^x.2+2^x.2^2+2^x.2^3=480\)

\(\Leftrightarrow\)\(2^x\left(1+2+2^2+2^3\right)=480\)

\(\Leftrightarrow\)\(2^x\left(1+2+4+8\right)=480\)

\(\Leftrightarrow\)\(2^x.15=480\)

\(\Rightarrow\)\(2^x=480:15\)

\(\Leftrightarrow2^x=32\)

\(\Rightarrow2^x=2^5\)

\(\Rightarrow x=5\)

Vậy x = 5.

5 tháng 7 2023

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)

\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

\(\left(x+2014\right)\times\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)

Vì \(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\) 

=> \(x+2014=0\) 

                  \(x=0-2014\) 

                  \(x=-2014\)

28 tháng 8 2017

Giải:

\(\dfrac{x+4}{2008}+\dfrac{x+3}{2009}=\dfrac{x+2}{2010}+\dfrac{x+1}{2011}\)

\(\Leftrightarrow\dfrac{x+4}{2008}+\dfrac{x+3}{2009}+2=\dfrac{x+2}{2010}+\dfrac{x+1}{2011}+2\)

\(\Leftrightarrow\dfrac{x+4}{2008}+1+\dfrac{x+3}{2009}+1=\dfrac{x+2}{2010}+1+\dfrac{x+1}{2011}+1\)

\(\Leftrightarrow\dfrac{x+4+2008}{2008}+\dfrac{x+3+2009}{2009}=\dfrac{x+2+2010}{2010}+\dfrac{x+1+2011}{2011}\)

\(\Leftrightarrow\dfrac{x+2012}{2008}+\dfrac{x+2012}{2009}=\dfrac{x+2012}{2010}+\dfrac{x+2012}{2011}\)

\(\Leftrightarrow\dfrac{x+2012}{2008}+\dfrac{x+2012}{2009}-\dfrac{x+2012}{2010}-\dfrac{x+2012}{2011}=0\)

\(\Leftrightarrow\left(x+2012\right)\left(\dfrac{1}{2008}+\dfrac{1}{2009}-\dfrac{1}{2010}-\dfrac{1}{2011}\right)=0\)

\(\dfrac{1}{2008}+\dfrac{1}{2009}-\dfrac{1}{2010}-\dfrac{1}{2011}\ne0\)

Nên \(x+2012=0\)

\(\Leftrightarrow x=0-2012\)

\(\Leftrightarrow x=-2012\)

Vậy \(x=-2012\).

Chúc bạn học tốt!

28 tháng 8 2017

\(\dfrac{x+4}{2008}+\dfrac{x+3}{2009}=\dfrac{x+2}{2010}+\dfrac{x+1}{2011}\)

\(\Rightarrow\dfrac{x+4}{2008}+1+\dfrac{x+3}{2009}+1=\dfrac{x+2}{2010}+1+\dfrac{x+1}{2011}+1\)

\(\Rightarrow\dfrac{x+2012}{2008}+\dfrac{x+2012}{2009}=\dfrac{x+2012}{2010}+\dfrac{x+2012}{2011}\)

\(\Rightarrow\dfrac{x+2012}{2008}+\dfrac{x+2012}{2009}-\dfrac{x+2012}{2010}-\dfrac{x+2012}{2011}=0\)

\(\Rightarrow\left(x+2012\right)\left(\dfrac{1}{2008}+\dfrac{1}{2009}-\dfrac{1}{2010}-\dfrac{1}{2011}\right)=0\)

\(\dfrac{1}{2008}+\dfrac{1}{2009}-\dfrac{1}{2010}-\dfrac{1}{2011}\ne0\)

Nên:

\(x+2012=0\Rightarrow x=-2012\)