BT:chứng minh rằng :
a,(5n+7).(4n+6)chia hết cho 2 với mọi số tự nhiên n
b,(8n+1).(6n+5)ko chia hết cho 2 với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2
a) (5n + 7).(4n + 6) = (5n + 7).2.(2n + 3) chia hết cho 2
b) Do 8n + 1 là số lẻ; 6n + 5 là số lẻ => (8n + 1).(6n + 5) là số lẻ, không chia hết cho 2
a/ \(\left(5n+7\right)\left(4n+6\right)=5n\left(4n+6\right)+7\left(4n+6\right)=20n^2+58n+42\)
Với \(n\varepsilon N\) thì : \(20n^2+58n+42⋮2\)
\(\Leftrightarrow\left(5n+7\right)\left(4n+6\right)⋮2\) với mọi n
b/ \(\left(8n+1\right)\left(6n+5\right)=8n\left(6n+5\right)+\left(6n+5\right)=48n^2+46n+5\)
Với mọi n \(n\in N\) thì : \(42=48n^2+46n⋮2\); \(5⋮2̸\)
\(\Leftrightarrow48n^2+46n+5⋮2̸\)
\(\Leftrightarrow\left(8n+1\right)\left(6n+5\right)⋮2̸\)
a) Xét 3 t/h của x :
+) Xét n là số lẻ => ( 5n + 7 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
+) Xét n là số chẵn => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
+) Xét n bằng 0 => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
Vậy ta có đpcm
b) C.m tương tự câu a :
+) Với n lẻ thì ko có thừa số nào là số chẵn => ko chia hết cho 2
+) Với n chẵn thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2
+) Với n = 0 thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2
Vậy ta có đpcm
P.s : chỉ cần mỗi t/h đầu là có thể đpcm rồi, nhưng để đầy đủ thì cứ làm cả ra nha
a)4n+6 chia hết cho 2 với mọi n nên ta có đpcm
b)Cả 2 thừa số dều lẻ với mọi n nên ta có đpcm
a) Ta có: 4n+6 có chữ số tận cùng là số chẵn
=> (4n+6).(5n+7) cũng có chữ số tận cùng là số chẵn
Mà các số có chữ số chẵn tận cùng đều chia hết cho 2
Vậy (5n+7).(4n+6) chia hết cho 2
b) Ta thấy: 8n+1 có chữ số tận cùng là một số lẻ
6n+5 có chữ số tận cùng cũng là một số lẻ
=> (8n+1).(6n+5) có chữ số tận cùng là một số lẻ
=> (8n+1).(6n+5) không chia hết cho 2
Vì n là số tự nhiên
Nên khi n là số chẵn thì n có dạng 2k
Ta có : (5.2k + 7) x (2.2k + 6) = (10k + 7) x 2.(2k + 3) chia hết cho 2
Nếu n là số lẻ thfi n có dạng 2k + 1
Ta có : (5.2k + 1 + 7) x (2.2k + 1 + 6) = (10k + 8) x ( 4k + 7) = 2(5k + 4) x (4k + 7) chia hết cho 2
Vậy với mọi số tự nhiện n thì (5n + 7) x (2n + 6) đếu chia hết cho 2 (đpcm)