Mọi người giúp mình bài này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(x - y = 5\)
\(\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{5}{-1}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5 . 2 = -10\\y=-5.3=-15\end{cases}}\)
b) Ta có :
\(x - y = 9\)
\(\frac{x}{-2}=\frac{y}{-5}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{-2}=\frac{y}{-5}=\frac{x-y}{-2-\left(-5\right)}=\frac{9}{3}=3\)
\(\Rightarrow\hept{\begin{cases}x=3. \left(-2 \right)= -6\\y=3 . \left(-5\right) = -15\end{cases}}\)
a)TXĐ:\(D=R\)
b)\(f\left(\dfrac{2}{3}\right)=\left(\dfrac{2}{3}\right)^2+\dfrac{2}{3}-2=-\dfrac{8}{9}\)
\(f\left(3\right)=3-2.3=-3\)
a.
Đường tròn có tâm \(\left\{{}\begin{matrix}x_I=2m\\y_I=-m-3\end{matrix}\right.\)
\(\Rightarrow x_I+2y_I=2m+2\left(-m-3\right)=-6\)
\(\Leftrightarrow x_I+2y_I+6=0\)
Hay quỹ tích tâm I của đường tròn là đường thẳng có pt: \(x+2y+6=0\)
b.
Gọi H là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}AH=\dfrac{1}{2}AB=3\\IH\perp AB\end{matrix}\right.\) \(\Rightarrow IH=d\left(I;d\right)\)
\(R=IA=\sqrt{\left(2m\right)^2+\left(-m-3\right)^2-\left(5m^2-6m-16\right)}=5\)
\(\Rightarrow IH=\sqrt{IA^2-AH^2}=4\)
\(d\left(I;d\right)=\dfrac{\left|3.2m-4\left(-m-3\right)+12\right|}{\sqrt{3^2+\left(-4\right)^2}}=4\)
\(\Leftrightarrow\left|10m+24\right|=20\Rightarrow\left[{}\begin{matrix}m=-\dfrac{2}{5}\\m=-\dfrac{22}{5}\end{matrix}\right.\)
bạn giải thích giúp mình bước 1 mấy bước sau mình sẽ tham khảo thêm cảm ơn nhiều 🙏
\(\dfrac{1}{\sqrt{\dfrac{5}{7}}+\sqrt{\dfrac{5}{13}}+1}+\dfrac{1}{\sqrt{\dfrac{7}{13}}+\sqrt{\dfrac{7}{5}}+1}+\dfrac{1}{\sqrt{1\dfrac{6}{7}}+\sqrt{2\dfrac{3}{5}}+1}\\ =\dfrac{1}{\dfrac{\sqrt{5}}{\sqrt{7}}+\dfrac{\sqrt{5}}{\sqrt{13}}+\dfrac{\sqrt{5}}{\sqrt{5}}}+\dfrac{1}{\dfrac{\sqrt{7}}{\sqrt{13}}+\dfrac{\sqrt{7}}{\sqrt{5}}+\dfrac{\sqrt{7}}{\sqrt{7}}}+\dfrac{1}{\dfrac{\sqrt{13}}{\sqrt{7}}+\dfrac{\sqrt{13}}{\sqrt{5}}+\dfrac{\sqrt{13}}{\sqrt{13}}}\\ =\left(\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{7}}+\dfrac{1}{\sqrt{13}}\right)\cdot\dfrac{1}{\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{7}}+\dfrac{1}{\sqrt{13}}}\\ =1\)
a. x2 - 2x
⇔ x(x - 2)
b. 3x - 6y
⇔ 3(x - 2y)
c. 5(x + 3y) - 15x(x + 3y)
⇔ (5 - 15x)(x + 3y)
d. 3(x - y) - 5x(y - x)
⇔ 3(x - y) + 5x(x - y)
⇔ (3 + 5x)(x - y)
a/
\(\frac{72}{\left(x-2\right)^2}=8\left(x\ne2\right)\Rightarrow\left(x-2\right)^2=9=3^2\)
\(\Rightarrow\left|x-2\right|=3\)
+ Nếu \(x-2\ge0\Rightarrow x\ge2\Rightarrow x-2=3\Rightarrow x=5\) (thoả mãn đk \(x\ge2\) )
+ Nếu \(x-2< 0\Rightarrow x< 2\Rightarrow2-x=3\Rightarrow x=-1\) (Thoả mãn đk \(x< 2\) )
b/
\(75-5\left(x-3\right)^3=700\Rightarrow\left(x-3\right)^3=-125=\left(-5\right)^3\)
\(\Rightarrow x-3=-5\Rightarrow x=-2\)
1/
PT $\Leftrightarrow \sin ^2x-(1-\sin ^2x)+\sin x-2=0$
$\Leftrightarrow 2\sin ^2x+\sin x-3=0$
$\Leftrightarrow (\sin x-1)(2\sin x+3)=0$
$\Leftrightarrow \sin x=1$ (chọn) hoặc $\sin x=-\frac{3}{2}< -1$ (loại)
Vậy $\sin x=1$
$\Leftrightarrow x=\frac{\pi}{2}+2k\pi$ với $k$ nguyên.
4/
ĐKXĐ: $\tan x\neq -1$
PT $\Rightarrow \cos ^2x(\cos x-1)=2(\sin x+1)(\sin x+\cos x)$
$\Leftrightarrow (1-\sin ^2x)(\cos x-1)=2(\sin x+1)(\sin x+\cos x)$
$\Leftrightarrow (1-\sin x)(1+\sin x)(\cos x-1)=2(\sin x+1)(\sin x+\cos x)$
$\Leftrightarrow (\sin x+1)[(1-\sin x)(\cos x-1)-2(\sin x+\cos x)]=0$
$\Leftrightarrow (\sin x+1)(-1-\sin x\cos x-\sin x-\cos x)=0$
$\Leftrightarrow (\sin x+1)^2(\cos x+1)=0$
Nếu $\sin x=-1\Rightarrow x=\frac{-\pi}{2}+2k\pi$ với $k$ nguyên (tm)
Nếu $\cos x=-1\Rightarrow x=\pi +2k\pi$ với $k$ nguyên.